Intelligent Compilation

John Cavazos
Department of

Computer and Information Sciences
University of Delaware

Dept. of Computer and Information Sciences : University of Delaware

» Proposition: Autotuning is a
component of an Intelligent Compiller.

Code Analyzer

Dense
Matrix
Optimizer
(ATLAS)

Simple Code Generation

Dept. of Computer and Information Sciences : University of Delaware

» Proposition: Autotuning is a
component of an Intelligent Compiler.

Code Analyzer

Simple Code Generation

Dept. of Computer and Information Sciences : University of Delaware

» Proposition: Autotuning is a
component of an Intelligent Compiler.

Code Analyzer

Simple Code Generation

Dept. of Computer and Information Sciences : University of Delaware

» Proposition: Autotuning is a
component of an Intelligent Compiler.

Code Analyzer

Simple Code Generation

Dept. of Computer and Information Sciences : University of Delaware

» Proposition: Autotuning is a
component of an Intelligent Compiler.

Code Analyzer

Simple Code Generation

Dept. of Computer and Information Sciences : University of Delaware

» Proposition: Autotuning is a
component of an Intelligent Compiler.

Simple Code Generation

Dept. of Computer and Information Sciences : University of Delaware

» “One size fits all” approach

» Tuned for average performance

» Aggressive opts often turned off
» Target hard to model analytically

Applications

Compilers

Operating System/Virtualiz'n

Hardware

Dept. of Computer and Information Sciences : University of Delaware

» Intelligent Compilers
» Use machine learning
» Learn to optimize
» Specialized to each Application/Data/Hardware

Applications

Intelligent Compiler Feedback
(Statistical Machine Learning

Operating System/Virtualiz'n

Hardware

Dept. of Computer and Information Sciences : University of Delaware

» WWe want intelligent, robust, adaptive
behaviour in compilers.

» Often hand programming very difficult

» Get the compiler to program itself, by
showing it examples of behaviour we want.

» This is the machine learning approach!

» We write the structure of the compiler and
it then tunes many internal parameters.

Dept. of Computer and Information Sciences : University of Delaware

» Individual optimization heuristic

» Instruction scheduling [NIPS 1997, PLDI 2005]
» WWhole-program optimizations [CGO '06 /'07]

» Individua
» Individua

methods [OOPSLA 2006]
loop bodies [PLDI 2008]

http://www.cis.udel.edu/~cavazos

Dept. of Computer and Information Sciences : University of Delaware

» Phrase as machine learning problem

» Determine inputs/outputs of ML model

» Important characteristics of problem (features)
» Target function

» Generate training data
» Train and test model

» Learning algorithms may require “tweaking”

Dept. of Computer and Information Sciences : University of Delaware

» Training of model

» Generate training data
» Automatically construct a model
» Can be expensive, but can be done offline

» Testing of model

» Extract features
» Model outputs probabillity distribution
» Generate optimizations from distribution

» Offline versus online learning

Dept. of Computer and Information Sciences : University of Delaware

» Whole Program Optimization
» Individual Method Optimization

Dept. of Computer and Information Sciences : University of Delaware

» Model Input

» Aspects of programs captured with perf. counters

» Model Output

» Set of optimizations to apply
» Automatically construct model (Offline)
» Map performance counters to good opts
» Model predicts optimizations to apply

» Uses performance counter characterization

Dept. of Computer and Information Sciences : University of Delaware

» Many performance counters available

» Examples:

Mnemonic Description Avg Values
» FPU _IDL (Floating Unit Idle) 0.473

» VEC INS (Vector Instructions) 0.017

» BR_INS (Branch Instructions) 0.047

»L1 ICH (L1 Icache Hits) 0.0006

Dept. of Computer and Information Sciences : University of Delaware

=) _ J b sl V)1 ('
= C : C g HOL_'T
- . ; ; : . e NOL 171
= Eo ” L ¢ A e (O 2 K
- C : C . 4 SNLLAV4
SNI N
VOIL_I]
Hal. ¢1
A1
VolL-€1
VL]
HOLC]
HOI L'l
MOA T
=, L _ __ DA 1
A _ Vod_Cl
Vodad_I'l
HOA_T'1
HOA_I1
JALLOL
TLS.SHY
SNI_DFA
SNI_¥Y
SNI di
dSIN_ M
NOLL ¥4
INI_MH
_ e : Co ADI TS
- - — _ — _ LS _C1
— | — : — ; AALTT
L _ Co INLS I
T Y NAT 1]
TL_g'IL
- I 41L
. NA_TTL
= _ : : © e '1dI Od
— | W)L Tl
- S " . g WOI £
i NOAd Tl
: L C - 4 WOI 11
- _ _ _ _ _ ﬂ ANOA 1]

S v O v O wn O wv O
b I £ o T (o T o R o I B

1

|

I—II_III_III_I

[

!

181 .mecef
|
H

I

[11]

Al

|

» Perf cntrs relative to several benchmarks

SIUD) 19 ATRIDAY 0) dAIR|DY

Dept. of Computer and Information Sciences : University of Delaware

» Perf cntrs relative to several benchmarks

181.mcf
IlIIIIII_I__IIIIIIIIIIIIIIIIIIIIIIIIIII
| R | SRS Problem: Greater number of memery- - -
IF-11--- 1t} - - o/ -accesses-per-instruction than -average - - -

(=)

Relative to Average Perf Cntrs

w o
I I
LI DCM =77 .

0 | | H | I—I HHHHIHIHHHHH HHIHIHHHIIlHH
SSSSASSASSSSEZANVNIVTN IR T T<< T <RONS T <
SOCCRAS T AEAC Lz S22 2E S S OTEr SOTSCE00Z25850
=R v =) i S o I =
s_phu'—DmEm-. | l_lg.\ll_‘»tg IP-H~2 817} FEPH R f:[_]c‘cl_fﬂ_l ;
NN NN e E SN TN N TS e = Y
R e Z i~ e ——Ee =

Dept. of Computer and Information Sciences : University of Delaware

PC Model

performance
counter fearures
— / \. forthe baseline /=
= N Tg (baseline option) ' X \
= > e o
w
s
k= ST best ser of transformations
S (option sequences) Compiler Spesiups
= ; 1 and s
= (£ibat-t) ® > Architecture s
g PC Model
£)
— >
= gred e SN
_—
J

Dept. of Computer and Information Sciences : University of Delaware

Programs (traming set)

Programs to train model (different from test program).

Dept. of Computer and Information Sciences : University of Delaware

Y N performance
counter fearures
— N\ ‘ _ / \. forthe baseline
- Tg (baseline option) X
— > ...)
ST best ser of transformations
— (option sequences) Compiler Speedups
. 1 and g
\ ity tuy) * > Architecture —],
S 79 52
¢iedtd) [N
A gXe) .. k) Sy
: o
J

PC Model

Programs (traming set)

performance

} counter fearures

for the baseli
/ \. for rexaseme ' \

...)

\

best sg¢t of transformations
(opfion sequences) Compiler
51

; . and
tfty ...ty,) ° Architecture — 23

o 7O $2
J‘ - 'u)i, Y >

Speedups

v

PC Model

>

Baseline runs to capture performance counter values.

Dept. of Computer and Information Sciences : University of Delaware

Programs (traming set)

[1]
A

Tg (baseline option)

best set of transformations
(option sequences)

R A
(.- 2 .\{) .

\

(7 t3 .. th)

€ty 1)

v

Compiler
and
Architecture

performance
ounter features|
for the }?aseline

>

Speedups

S1
—

S2

>

SN

=

YvyYy

PC Model

Obtain performance counter values for a benchmark.

Dept. of Computer and Information Sciences : University of Delaware

performance
counter fearures

— N ‘ _ / \. forthe baseline
- Tg (baseline option) X
3 — > >
g;
k= ST / best set of rransformations\
= — (option sequences) Compiler Speedups
! . 1 and
z > ity tuy) > Architecture ks
E T 4 — =
2 S 79 52
-3 (1 2 M)*7 . 3 re.
- gXe) .. k) Sy
y 2

PC Model

Best optimizations runs to get speedup values.

Dept. of Computer and Information Sciences : University of Delaware

Programs (traming set)

Best optimizations runs to get speedup values.

Tg (baseline option)

best set of transformations
(option sequences)

R A
(.- 2 .\{) .

\

(7 t3 .. th)

ered . th)

v

Compiler
and
Architecture

performance
counter fearures
for the }?aseline

>
)
Speedups

S1
—_—

S2

PC Model

Dept. of Computer and Information Sciences : University of Delaware

O E

performance / \
— counter fearures L
= T (basel o) for the baseline
8 [5 (baseline option X
él >) — — E—
a - Compiler
2 and
] . .
redicied set of best
C ! s'ans;tgm:azﬁ)zf : S gt \ /
speedups
e bl sa
> R <
7 t5t5) 53
> _—

New program interested 1n obtaining good performance.

Dept. of Computer and Information Sciences : University of Delaware

O E

performance
counter fearures
} for the baseline

X

—_—

>

— { Tg (baseline option)
and
predicted set of best Architecture best K /

T rion
fransformations speedups

e bl sa
—_—

Compiler

New program

v

38
—_

Baseline run to capture performance counter values.

Dept. of Computer and Information Sciences : University of Delaware

IVIOQ E

i N ™ / R
Compiler U/

performance
and

counter fearures
predicred set of best Architecture best \ /

. _ for the baseline

— T (baseline option) X
tranjfo:manonf speedups

Eded wtd) A

> —
R

New program

v

38
—_

Feed performance counter values to model.

Dept. of Computer and Information Sciences : University of Delaware

VIO E

@4 tf td)

>

=

:'_St - Tg (baseline option)

E _ -

=)

5

-4 predicred set of best
fransformations

v

B +B B8
1242

v

Compiler
and

Architecture

performance / \

counter fearures L

for the baseline
X

—_—

best \

speedups
5
R <

38
.

Model outputs a distribution that 1s use to generate sequences

Dept. of Computer and Information Sciences : University of Delaware

O E

performance / \
counter fearures L
= T (basel o) for the baseline
8 [5 (baseline option X
él >) — — E—
a - Compiler
2 and
] . .
redicied set of best
8 ! s'ans;?m:azﬁ)zf : S gt \ /
T : speedups
| g Sl e A
> R <
7 t5t5) 53
> _—

Optimization sequences drawn from distribution.

Dept. of Computer and Information Sciences : University of Delaware

» Trained on data from Random Search

» 500 evaluations for each benchmark
» Leave-one-out cross validation

» Training on N-1 benchmarks
» Test on Nth benchmark

» Logistic Regression

Dept. of Computer and Information Sciences : University of Delaware

» Variation of ordinary regression

» Inputs

» Continuous, discrete, or a mix

» 60 performance counters
» All normalized to cycles executed

» Ouputs

» Restricted to two values (0,1)
» Probability an optimization is beneficial

Dept. of Computer and Information Sciences : University of Delaware

» PathScale industrial-strength compiler

» Compare to highest optimization level
» Control 121 compiler flags

» AMD Athlon processor
» Real machine; Not simulation
» 57 benchmarks

Dept. of Computer and Information Sciences : University of Delaware

» Combined Elimination [CGO 2006]

» Pure search technique

» Evaluate optimizations one at a time
» Eliminate negative optimizations in one go

» Out-performed other pure search techniques

» PC Model

Dept. of Computer and Information Sciences : University of Delaware

B PC Model

B CE

Combined Elimination (CE) and PC Model

[
Sy 8
—{ L | —

[
O T N A
g p— g g

ISBJO— O] IANIR[IY

'
_

— r—{

—{

ATRIAR
isderjo¢
JIOMT00¢
cdizq9¢g
Jasied /6]
PeEWI6]
SeIN|'68 |
dwwe-gg|

ASTLARNV
aenba ¢y
Jpurig]
HE'6LI
[95[v5°gL |
eSaW// |
adagr)
nidde ¢/ |
pLBWTL
WIMS [L]
asmmdnmegg|
diz5 p9]
CIABM OF]
isde |1
PEGINY'CT]
niddeg |
pLBW L]
PTOIPAYHO |
1007Ns°¢() |
WIMS 70
AJRIWOY [()|

Obtained > 25% on 7 benchmarks and 17% over highest opt

Dept. of Computer and Information Sciences : University of Delaware

» Whole Program Optimization
» Individual Method Optimization

Dept. of Computer and Information Sciences : University of Delaware

» Integrate machine learning into Java JIT compiler

» Use simple code properties
» Extracted from one linear pass of bytecodes

» Model controls up to 20 optimizations

» Outperforms hand-tuned heuristic
» Up to 29% SPEC JVM98
» Up to 33% DaCapo+

Dept. of Computer and Information Sciences : University of Delaware

» Phase 1: Training

» Generate training data
» Construct a heuristic
» Expensive offline process

» Phase 2: Deployment

» During Compilation
» Extract code features
» Heuristic predicts optimizations

Dept. of Computer and Information Sciences : University of Delaware

» For each method

» Evaluate many opt settings

» Fine-grained timers

» Record running time
» Record compilation time

» For optimization level O2
» Evaluate 1000 random settings
» One model for the optimization level

Dept. of Computer and Information Sciences : University of Delaware

» Training example for each method

» Inputs - Features of method
» Outputs - Good optimization setting

methods

foo

bar

Training examples

inputs

108;25;0;0; ... ;.08;0;

93;21;0;1; ... :.50;0;

outputs

1;0;1;1; ... 1;1;1;0

1;1;0;0; ... 1;0;0;0

Dept. of Computer and Information Sciences : University of Delaware

Method Meaning
Features
Size Number of bytecodes

Locals Space

Words allocated for locals space

Characteristics | Is syncronized, has exceptions,
is leaf method
Declaration Is it declared final, static, private
_ Has array loads and stores
Fraction of primitive and long computations
Bytecodes | compares, branches, jsrs, switches,

put, %et, iInvoke, new, arraylength
athrow, checkcast, monitor

Note: 26 features used to describe method

Dept. of Computer and Information Sciences : University of Delaware

Optimization

Level Optimizations Controlled
Branch Opts Low
Opt Level Constant Prop / Local CSE
OO0 Reorder Code
Copy Pro / Tail Recursion
Opt Level Stat!%ys Iittllan / Branch Opt Med
O1 imple Opts Low
While into Untils / Loop Unroll
Branch Opt High / Redundant BR
Opt Level | Simple Opts Med / Load Elim
02 Expression Fold / Coalesce

Global Copy Prop / Global CSE
PY T dsA

Dept. of Computer and Information Sciences : University of Delaware

Method

Jikes RVM

/

Optimized
bytecodes Commaille C method
Heur]fstic Optlmlzer
Feature
extractor Logistic
» regression >

model

Dept. of Computer and Information Sciences : University of Delaware

Jikes RVM

Method
bytecodes Compiler . .
Heur]i)stic Optimizer
A
Feature Logistc
_yextracto | resrousion
model

Optimized
method

v

Dept. of Computer and Information Sciences : University of Delaware

Method JlkeS RVM Optinﬁizgd
bytecodes Compiler . . metho
Heur]i)stic Optimizer
/
Feature
extractor Logistic
» regression >
Feature odel
Vector

108;25;0;0;0;0;1;0;0:2;0:0;0:0;0:0;0:0;0:0
:12;0:0;0:08;0:0;0:0;0:0;0:2;0:32;0:08;0:0}

Dept. of Computer and Information Sciences : University of Delaware

Jikes RVM

Method Optimized
bytecodes Compiler method

Heuristic Optimizer

/
Feature o e
extractor LOngt.lC
Feature " regression >
Vector model

Dept. of Computer and Information Sciences : University of Delaware

Method

Jikes RVM

Optimized
bytecodes Cammaile C method
Heur]i)stic Optlmlzer

Feature
extractor Logistic
» regression >
Opt
model Flags

{1,0;1;1;0;0;0;1;1;1;1;1;1;1;1;0;1;1;1,0}

Dept. of Computer and Information Sciences : University of Delaware

Opt Level 2

[IRunning [Total

compress jess raytrace db javac mpegaudio jack geo-mean

Dept. of Computer and Information Sciences : University of Delaware

1.1

Opt Level O2

[]Running [Total

0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

fop jython pmd ps antlir pseudojbb ipsixql geo-mean

Dept. of Computer and Information Sciences : University of Delaware

» Single-core optimizations still important

» Optimization phase-ordering
» Optimization for program phases
» Speculative optimizations

» Parallel optimizations

» Task partitioning

» Communication/computation overlap
» Task scheduling/migration

» Data placement/migration/replication

Dept. of Computer and Information Sciences : University of Delaware

» Using machine learning successful

» Out-performs production compiler in few evaluations

» Using perf. counters/code characteristics

» Determines automatically what characteristics are
Important

» Optimizations applied only when beneficial

Dept. of Computer and Information Sciences : University of Delaware

http://www.hipeac.net/smart-workshop.html

3™ Workshop on

Statistical and Machine learning approaches

to ARchitectures and compilaTion

(SMART '09)

January 25, 2009, Paphos, Cyprus
(co-located with HIPEAC 2009 Conference)

Sponsored by:

\
4

MILEPOST

Program Chair:

David Padua
University of lllinois at Urbana-
Champaign, USA

Organizers:
Grigori Fursin
INRIA Saclay, France

John Cavazos
University of Delaware, USA

The rapid rate of architectural change and the large diversity of architecture features
has made it increasingly difficult for compiler writers to keep pace with
microprocessor evolution. This problem has been compounded by the introduction
of multicores. Thus, compiler writers have an intractably complex problem to solve.
A similar situation arises in processor design where new approaches are needed to
help computer architects make the best use of new underlying technologies and to
design systems well adapted to futureapplication domains.

Recent studies have shown the great potential of statistical machine learning and
search strategies for compilation and machine design. The purpose of this
workshop is to help consolidate and advance the state of the art in this emerging
area of research. The workshop is a forum for the presentation of recent
developments in compiler techniques and machine design methodologies based on
space exploration and statistical machine learning approaches with the objective of
improving performance, parallelism, scalability, and adaptability.

Topics of interest include (but are not limited to):
Machine Learning, Statistical Approaches, or Search applied to

Dept. of Computer and Information Sciences : University of Delaware

