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Abstract. In a distributed system which consists of unknown number
of machines, many task clustering heuristics have been proposed in order
to satisfy requirements such as determining the number of machines and
minimizing response time for scheduling Directed Acyclic Graph(DAG).
However, those heuristics are not aware of the actual number of existing
machines, because their objective is only to minimize response time. As a
result, the number of machines determined by an existing task clustering
may exceed the number of actually existing machines. Therefore, conven-
tional approaches adopt merging each cluster for reducing the number
of clusters at the expense of increase of response time.
In this paper, we present a static cluster size determination method and
requirements for a task clustering in order to suppress response time
while reducing the number of clusters. Our experimental evaluation by
simulation shows the effectiveness of a task clustering which adopts the
requirements.
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1 Introduction

In a distributed system where each machine sends or receives data over the
network, scheduling tasks to minimize response time is very important issue[2,
8, 7, 6]. As one of existing task scheduling models to be assumed, scheduling
task graph which consists of directed edges and tasks, i.e., Directed Acyclic
Graph(DAG), has been considered as an NP-complete problem[6]. Especially, if
the number of machines is not given, we must derive not only execution order
of each task, but also the number of machines in order to obtain good response
time. As one approach which meets those requirements, task clustering[1] has
been known. One fundamental feature of task clustering is to merge several
tasks into one cluster by localizing communication overhead among them, so
that each cluster corresponds to each assignment unit per one machine. How-
ever, if the smaller communication overheads among tasks become, the longer
the response time becomes due to the fact that increase of task parallelism can
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prolong response time. In a distributed environment to which several application
can be submitted, e.g., in a grid environment, utilizing computational resources
effectively is a key factor for achieving reduced response time for executing all
applications. For realizing utilization of computational resources, it is important
to derive execution order of every task which can minimize response time, while
reducing the number of clusters as much as possible. There are several heuris-
tic approaches whose purposes are to reduce the number of clusters by merging
several clusters into a larger one after task clustering. Pyrros compiling infras-
tructure[4] adopts a criterion for equalizing each cluster size. Liou et al. proposed
two task merging approach, i.e., LB(Load Balancing) and CTM(Communication
Traffic Minimizing)[5]. Merging criterion of LB is the same as the cluster merging
adopted in Pyrros[4] except that LB does not consider data dependencies among
tasks. On the other hand, the criterion of cluster merging performed by CTM
is that sum of data transfer time among clusters to be merged is minimized as
far as possible. According to the results of performance comparison between LB
and CTM, both of cluster merging approaches have bad effects on response time
when they are performed after task clustering, e.g., CASS-II[5]. According to [5],
performing LB after CASS-II, makes response time prolonged up to 19 % com-
pared with response time obtained by only CASS-II. In the case of performing
CTM after CASS-II, response time is prolonged up to 55 %. This means that a
cluster merging approach which sacrifices task parallelism can prolong response
time. Thus, a cluster merging strategy for maintaining task parallelism with the
small number of clusters is required.

In this paper, we present a method for cluster size determination in order
to obtain a good response time with small number of clusters. As one heuristic
for reducing the number of clusters generated by a task clustering, we impose a
lower bound for each cluster size as “δ”. Since imposing such a lower bound can
lead to decrease of task parallelism in each cluster, the fundamental objective
is to suppress the increase of response time. Therefore, we derived the cluster
size in the case that an upper bound of response time can be minimized as
much as possible. Then we present requirements for a task clustering heuristic
for minimizing an upper bound of response time.

The remainder of this paper is organized as follows. Section 2 presents as-
sumption and problem definition, and defiinition of an upper bound of response
time is presented in section 3. Derivation method of cluster size is presented in
section 4. Experimental evaluation by simulation is presented in section 5, and
finally, conclusion and our future work are presented in section 6.

2 Problem Definition and Assumptions

2.1 Assumed Model

Let Gorg = (V,E) be the initial DAG, and V be a set of tasks, E be a set of
data communications among tasks. An i-th task is denoted as ni. Also, here we
assume every machine has the same processing speed and data transfer rate. Let
w(ni) be a size of ni, i.e., w(ni) is the processing time of ni. We define data
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Fig. 1. Derivation of Response Times by Task Clustering and Cluster Merging.

dependency and direction of data transfer from ni to nj as ei,j . And we define
data transfer time from ni to nj as c(ei,j).

The assumed network model is that each machine is completely connected,
i.e., multiple data from one machine can be transferred in parallel, such as [3,
6, 8, 10, 11]. One constraint imposed by DAG is that a task can not be started
execution until all the data from its predecessor tasks arrives. For instance, ei,j

means that nj can not be started until data from ni arrives at the machine
which will execute nj . And let pred(ni) be the set of immediate predecessors of
ni, and suc(ni) be the set of immediate successors of ni. If pred(ni) = ∅, ni is
called START task, and if suc(ni) = ∅, ni is called END task. If there are one
or more paths from ni to nj , we denote such a relation as ni ≺ nj .

2.2 Task Clustering

In general, a task clustering heuristic performs merging several tasks into one
cluster, so that each cluster becomes one assignment unit per one machine. Let
us denote the clustered DAG, which are the resultant DAG after task clustering
as Gcls = (V ′, E′), where V ′ is the set of clusters. We denote the i-th cluster
in V ′ as cls(i). If nk is included in cls(i) by task clustering, we formulate such
an procedure as cls(i) ← cls(i) ∪ {nk}. If any two tasks, i.e., ni and nj , are
included in the same cluster, they are assigned to the same machine, and the
communication between ni and nj is localized, so that we define c(ei,j) becomes
zero. We define that the size of each cluster, i.e., processing time of cls(i) in a
machine, is denoted as w(cls(i)). Throughout this paper, we denote that cls(i)
is “linear” if and only if cls(i) contains no independent task[3]. Note that if one
cluster is linear, at least one path among any two tasks in the cluster exists and
task execution order is unique.
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2.3 Problems in Conventional Cluster Merging

If the number of clusters is greater than that of machine, some approaches for
cluster merging to adjust the number of the former to that of the latter are re-
quired. Fig. 1 demonstrates procedures by task clustering(b) and cluster merg-
ing((c),(d)). In this figure, (a) is the initial DAG, and (b) is the resultant DAG
which consists of 3 clusters, i.e., CL1, CL2, CL3 by performing task clustering.
(c) and (d) are the resultant DAGs generated by performing cluster merging
after the state of (b). Response time of initial DAG((a) at Fig. 1) corresponds
to the length of a critical path, i.e., n1 → n3 → n5 → n7, whose value is 23.
From this state, we obtain the state of (b) by performing linear clustering[3].
In a cluster generated as a result of linear clustering, precedence relationship
between any two tasks is decided, so that the execution order of all tasks in the
cluster is fixed. This means that no scheduling is required for the DAG gener-
ated after linear clustering. The response time of DAG (b) is 20. If the number
of actual machines is 2, the clusters must be merged as (c) or (d). If cluster
2(CL2) is merged with cluster(CL1), two types of independent relations exist
in CL1., i.e., n2, n3 and n2, n5. As a result, the response time in (c) is 23 by
tracing n2 → n3 → n5. On the other hand, the response time in (d) is 24 with
considering that arrival time of c(e2,7) at n7 is prolonged, because the execution
order in CL1, i.e., n3 → n2 → n5 makes start time of n2 prolonged than that of
(c).

From those results, we can say that start time of each task can be prolonged
if task merging is performed after task clustering, depending on dependencies
among tasks. Thus, the greater the number of merged clusters is, the longer
response time is. Such two step procedures have been adopted in [5, 4]. At the
task clustering phase, criteria for minimizing response time with small number of
clusters are required for a distributed environment to which multiple applications
can be submitted. We impose the lower bound of cluster size in order to limit
the number of clusters. Here, we define such a lower bound as “δ”.

2.4 Requirements for Reducing both Response Time and the
Number of Machines

Conventional task clustering heuristics[2, 6, 8, 10] decide a response time based
on a specific scheduling policy, i.e., a scheduling priorities in order to check
whether a response time is prolonged or not after each clustering procedure. In
such cases, if a response time is prolonged, the task clustering procedure is not
accepted and then one cluster generation is completed. On the other hand, if δ
is introduced into a task clustering heuristic, each cluster size must exceed the
δ, so that the obtained number of cluster can be guaranteed, i.e., the maximum
number of cluster is ⌊ 1

δ

∑
nk∈V w(nk)⌋.

However, if we impose δ as lower bound of cluster size and then each task
is merged into one cluster, several tasks which have no dependencies may be
included in the same cluster, so that response time can not be suppressed like (c)
and (d) in Fig. 1. We need criteria for suppressing the increase of response time
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Fig. 2. Notations of a DAG.

if the condition, i.e., δ is imposed to a task clustering heuristic. Our objective
in this paper is to derive δ, i.e., δopt by which an upper bound of the response
time is minimized. In this paper, we define the upper bound as “Worst Response
Time (WRT)”.

3 Definition of WRT

3.1 Abstract of WRT

Fig. 2 illustrates notations required for deriving WRT. In this figure, the DAG
consists of several clusters. In cls(i), top(i) is the set of tasks whose all immediate
predecessor tasks belong to other clusters. This means that any task in top(i)
must be executed before tasks which does not belong to top(i). in(i) is the set of
tasks, one or more of whose immediate predecessor tasks belong to other clusters.
out(i) is the set of tasks, one or more of whose immediate successor tasks belong
to other clusters. btm(i) is the set of tasks whose all immediate successor tasks
belong to other clusters.

In reality, for each task we need to derive data arrival time from its immediate
predecessor tasks to decide an actual upper bound of response time. However, at
each task, waiting time for data arrival depends on the scheduling policy which
is applied during each task merging procedure. WRT must be the one which
is independent from every scheduling policy. Therefore, we impose a relaxation
condition that waiting time (idle time) for each task in a cluster is ignored in
order to avoid calculation steps required for scheduling priorities. Here, We define
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that WRT is an upper bound of the worst response time with ignoring every idle
time of in(i) tasks, for every cluster, cls(i).

3.2 Derivation of WRT

We need to derive start time for each task in top(i) in order to decide WRT. At
first, we define TL(i) as the latest time when tasks in top(i) may start.

TL(i) = max
nk∈top(i)

{
max

nl∈pred(nk)
{tlevel(nl) + c(el,k)}

}
, (1)

where tlevel(nk) is the start time of nk when it is ready for execution after its all
predecessor tasks and independent tasks are executed disregarding data arrival
from tasks in other clusters. Note that nl /∈ cls(i). As described in the section
3.1, if nl does not belong to top tasks of a cluster(here, let the cluster as cls(h)),
tlevel(nl) means the start time of nl with satisfying the following conditions.

– nm has been executed before nl, where ∀nm ∈ cls(h), nm ⊀ nl, nl ⊀ nm, nm.
– nl does not wait for data arrival from all its immediate predecessor tasks.

For each nk ∈ cls(i), to derive tlevel(nk) we need to know the elapsed time
from TL(i) to start time of nk. If the elapsed time in case that nk is executed
as late as possible is defined as S(nk, i), it is defined as

S(nk, i) =
∑

nk∈cls(i)

w(nk) −
∑

nk∈dest(nk,i)

w(nk), (2)

where dest(nk, i) = {nm|nk ≺ nm, nm ∈ cls(i)} ∪ {nk}.

dest(nk, i) means the set of nk’s successor tasks in cls(i) and nk. From (1) and
(2), we define tlevel(nk) as

tlevel(nk) = TL(i) + S(nk, i), where nk /∈ top(i). (3)

Next, we need to derive the elapsed time from the finish time of every task
in top(i) to the finish time of END task. We define such an elapsed time which
is prolonged as long as possible as BL(i). To decide BL(i), we need to derive
the maximum elapsed time from start time for each task to finish time of END
task. Let the maximum elapsed time be blevel(nk) for each nk ∈ V . Also, let
blevelout(nk) as the maximum elapsed time from start time of nk ∈ out(i) to
finish time of END task, which does not include execution time of other tasks
in cls(i). In Fig. 2, blevel(n4) and blevelout(n4) can be defined as

blevel(n4) = max{blevelout(n4), w(n4) + blevel(n5)},
where blevelout(n4) = w(n4) + c(e4,6) + blevel(n6),

where blevel(n7) and blevel(n8) must be derived to decide blevel(n6). The possi-
ble execution orders in n6, n7, n8 which decide the maximum time duration from
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n6 to END task is respectively, n6 → n7 → n8, n6 → n8 → n7. Thus, blevel(n6)
is defined as

blevel(n6) = max{w(n6) + w(n7) + blevel(n8), w(n6) + w(n8) + blevel(n7).}

Here, suppose nk, nl ∈ cls(i) and let dest′i(nk, nl) mean the following relation-
ship.

dest′i(nk, nl) = dest(nk, i) − dest(nl, i),
blevelout(nk) = max

np∈suc(nk),np /∈cls(i)
{w(nk) + c(ek,p) + blevel(np)} .

From dest′i(nk, nl)，we obtain blevel(nk) as

blevel(nk) =

max


blevelout(nk),

max
nk≺nl

{ ∑
nm∈dest′i(nk,nl)

w(nm) + blevel(nl)

} ,

(
nk /∈ btm(i),
nk ∈ out(i)

)

blevelout(nk), (nk ∈ btm(i))

max
nk≺nl

{ ∑
nm∈dest′i(nk,nl)

w(nm) + blevel(nl)

}
, (nk /∈ out(i)).

(4)

dest′i(nk, nl) is the set of tasks which can be executed during from start time of
nk to finish time of nl. For instance, in Fig. 2, dest′j(n6, n8) and dest′j(n6, n7)
are defined as

dest′j(n6, n8) = dest(n6, j) − dest(n8, j) = {n6, n7, n8} − {n8} = {n6, n7},
dest′j(n6, n7) = dest(n6, j) − dest(n7, j) = {n6, n7, n8} − {n7} = {n6, n8}.

Let BL(i) be the maximum time duration from start time of a task in top(i) to
finish time of END task. Then we define BL(i) for each tasks in out(i) as

BL(i) = max
nk∈out(i)

{S(nk, i) + blevel(nk)} . (5)

Let level(nk) be level(nk) = tlevel(nk) + blevel(nk), and then let LV (i) be the
maximum time duration from start time of one START task to finish time of
END task, which includes execution time of any one task in cls(i) as

LV (i) = max
nk∈cls(i)

{level(nk)} = TL(i) + BL(i). (6)

Let WRT value be WRT (Gcls), which is the WRT of the clustered DAG. Then
we define WRT (Gcls) as

WRT (Gcls) = max
cls(i)

{LV (i)} . (7)

Therefore, the objective described in section 2.4 is expressed as



8 Hidehiro Kanemitsu, et. al

( )cls i

( 1)cls i +

iN

1iN +

maxp

1iN +

( 1)cls i +

( )cls i

iN

maxseq

max maxp seq=

Fig. 3. Concept of Upper Bound of WRT (Gcls).

Objective 1 Find δopt such that∑
nj∈cls(i)

w(nj) ≥ δopt, min
Gcls

{WRT (Gcls)} . (8)

4 Derivation of Cluster Size for Minimizing WRT

In this section, we analyze an upper bound of WRT derived under the condition
that each cluster size must exceed δ. Then we derive δopt, by which WRT is
minimized as much as possible.

4.1 Upper bound of WRT

If we assume a cluster structure generated by a task clustering, there are 2
possible structures, i.e., the one is a cluster in which execution order for each
task is fixed, and the other is not. As described in section 2.2, the former case
is said to linear, and let the latter case be named as non-linear, both of which
are defined in [3]. Here, we analyze WRT of a clustered DAG with considering
those structures.

Here, let ∆Li be the increment of LV (i) for each cls(i) after a task cluster-
ing1. Let ∆WRT = WRT (Gcls) − WRT (Gorg), and let Tmax be the maximum
number of tasks in each path of Gorg. For simplicity, let wmax be the maximum
task size in Gorg. Fig. 4 shows definitions used in this section. secmax is the
set of tasks and edges, by which WRT (Gcls) is derived. In secmax, pmax is the
set of tasks and edges in which every task has dependencies each other. Here,
we assume 3 types of the clustered DAG in which WRT is determined, i.e., (A)
1 At the initial DAG, each cluster includes only one task. Thus, LV (i) for each cls(i)

in the initial DAG is the maximum path length from START task to END task,
including cls(i) = {ni}. Therefore, WRT (Gorg) equals to critical path length of the
initial DAG.
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every cluster which determine WRT is linear, (B) no linear cluster exists, (c)
some clusters is linear and other clusters are non-linear.

(A) Every cluster, which includes one or more tasks on pmax, is linear ((A)
at Fig. 4). For each task in cls(i), let Ni be the set of tasks and edges in which
every task has dependencies each other. Then we obtain the following equation.

∆Li = −
∑

ek,l∈Ni

c(ek,l). (9)

Here, as DAG granularity is defined in [3], we define gmax as

gmax = max
{

max
nk∈V

{gpred(nk)} , max
nk∈V

{gsuc(nk)}
}

,

gpred(nk) = max
nj∈pred(nk)

{
w(nk)
c(ej,k)

}
, gsuc(nk) = max

nl∈suc(nk)

{
w(nk)
c(ek,l)

}
. (10)

By using (10), we obtain

∆Li ≤ −

 ∑
nk,nl∈Ni

c(ek,l)w(nk)
w(nk)

−wmax

gmax


≤ −

( ∑
nk∈Ni

c(ek,l)w(nk)
w(nk)

− c(em,ENDi)w(nENDi)
w(nENDi)

)

≤ 1
gmax

(
wmax −

∑
nk∈Ni

w(nk)

)
, (11)

where nm ∈ pred(nENDi), and nENDi is btm(i), which includes only one task
in (A). Since the lower bound of the number of tasks inclued in each cluster is
δ/wmax, we define the number of tasks in each cluster as ϕ. Then we obtain

ϕ ≤ Tmaxwmax

δ
. (12)

By summing ∆Li for each cluster which is one part of the path of WRT (Gcls),
the following inequality is obtained.

∆WRT =
∑

Ni∈pmax

∆Li

≤ 1
gmax

∑
Ni∈pmax

(
wmax −

∑
nk∈Ni

w(nk)

)
. (13)

Let sum of task size in Ni be w(Ni) and let the minimum summed value of task
size in one path be min{wpath}. By applying (12) to (13), we obtain

∆WRT ≤ 1
gmax

(
w2

maxTmax

min {w(Ni)}
− min{wpath}

)
. (14)
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As a special case in (14), if every task in each cluster is included in pmax, i.e., if
min{w(Ni)} ≥ δ, we obtain

∆WRT ≤ 1
gmax

(
w2

maxTmax

δ
− min{wpath}

)
. (15)

From (15), if every cluster in pmax is linear and every task in such a cluster
belongs to pmax, it can be said that WRT is suppressed if δ is large value.

(B) Every cluster which includes one ore more tasks in pmax, is not linear.
Here, we assume that each cluster generation procedure must be completed when
a cluster size exceeds B, otherwise we can not estimate an upper bound of each
cluster size. Under the constraint, the fact that each cluster size is less or equal
to δ + wmax, is obtained. Therefore, the upper bound of ∆Li in (B) is expressed
as

∆Li ≤ (δ + wmax) −
∑

nk∈Ni

w(nk) −
∑

ep,q∈Ni

c(ep,q)

≤ (δ + wmax) −
∑

wk∈Ni

w(nk) − 1
gmax

( ∑
nk∈Ni

w(nk) − wmax

)

= (δ + wmax) −
∑

nk∈Ni

w(nk)
(

1 +
1

gmax

)
+

wmax

gmax
. (16)

Here, let the number of clusters each of which includes one or more tasks in pmax

as ϕ, we obtain

∆WRT =
∑

Ni∈pmax

∆Li

≤
∑

Ni∈pmax

(δ + wmax) −
∑

Ni∈pmax

∑
nk∈Ni

wk

(
1 +

1
gmax

)
+

∑
Ni∈pmax

wmax

gmax

≤ ϕ

{
δ + wmax

(
1 +

1
gmax

)}
− min {wpath}

(
1 +

1
gmax

)
. (17)

From (17), in this case, the larger δ becomes, the longer WRT becomes.
(C) In all cluster which includes tasks in pmax, some clusters are linear and

others are non-linear. Since the number of linear clusters is less than Tmaxwmax/δ,
here, let the number of them be (Tmaxwmax/δ) − y and let the number of non-
linear clusters be y. From (11) and (16), we obtain the upper bound of ∆WRT
as

∆WRT ≤ 1
gmax

(
wmaxTmax

δ
− y

)
wmax − 1

gmax

∑
nk∈Ni

w(nk)

+ y

{
δ + wmax

(
1 +

1
gmax

)}
− y

∑
nk∈Ni

w(nk)
(

1 +
1

gmax

)
. (18)
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If we differentiate (18) with respect to δ, we obtain

δ = wmax

√
Tmax

gmaxy
. (19)

From (19), it can be said that there is a minimal value in ∆WRT .

4.2 Derivation of δopt

From (15), ∆WRT is monotonically decreasing in (A). On the other hand, from
(17), ∆WRT is monotonically increasing in (B). If structure of each cluster
changes from linear to non-linear by a task clustering heuristic, we can say
that the minimum WRT can be obtained during (C). Here, to achieve static and
automatic determination of an appropriate lower bound of cluster size, we derive
δopt by which WRT is minimized as much as possible.

In (19), since y ≥ 1, the range of δ for minimizing WRT as much as possible
is defined as

δ ≤ wmax

√
Tmax

gmax
. (20)

Since it is required that δ must be large in order to suppress the number of
cluster, we obtain δopt as

δopt = wmax

√
Tmax

gmax
. (21)

4.3 Requirements for Minimizing WRT in a Task Clustering

From results in section 4.2, requirements for a task clustering heuristic in order
to obey the state transition described in 4.2 are defined as follows.

1. Merge tasks in order to generate a cluster until the cluster size exceeds δopt.
2. A unmerged task, which has dependencies with one of a merged task in a

cluster, must be chosen in order to generate a linear cluster.
3. If no task which is required for generating a linear cluster does not exist, a

task which is required for suppressing the increase of WRT must be chosen.

In [9], an exemplary clustering heuristic, which obeys requirement 2 and 3, is
described. The heuristic in [9] performs merging each task until each cluster size
exceeds a manually defined δ. Therefore, by applying (21) into the heuristic,
requirement 1 is satisfied.

5 Experimental Evaluation

In this section, we present results of experimental comparison in terms of WRT
and response time among several task clustering heuristics, i.e., the one which
combines [9] and the requirements presented in section 4.3, and other existing
approaches.
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5.1 Simulation Environment

The objective of the evaluation is to clarify the relationship between minimizing
WRT and response time. In this evaluation, we derive WRT and response time
obtained by each approaches while changing both size and structure of initial
DAG. The number of tasks, i.e., |V | is respectively set to 500 and 1000, in order
to confirm whether scale of the problem has effect on an obtained response time
or not. P , which is the number of successor tasks of each task, is varied. We also
changed R, the value of the ratio of data transfer time to task execution time.
δopt is derived as (21) as a lower bound of each cluster size.

Existing approaches to be compared are categorized as two types. The first
type is “two step merging”(task clustering and cluster merging), e.g., CASS-
II+LB[8][5], DSC+CM(Cluster Merging)[2][4]. Both LB and CM perform merg-
ing tasks in order to equalize each cluster size. One difference between them is
whether every task in each cluster has dependencies to its immediate predecessor
tasks which belong to the same cluster or not. LB adopts such a policy and CM
does not, so that every task in a cluster in case of CM may have no dependency
to every task in a cluster. The other type is “one step merging”, e.g., LB[5] and
a task clustering heuristic presented in [9] with satisfying the constraint that
each cluster size is above δopt(hereinafter, we denote it as “[9] with δopt”). We
derived both WRT after each approach finishes. Then we derived response time
for each approach by applying Ready Critical Path(RCP) scheduling[7]. RCP is
one of list scheduling heuristic, whose characteristic is to impose priority as a
path length from START task to each ready task. Then the task which has the
minimum priority is scheduled. Therefore, one characteristic of RCP is to reduce
a possible start time for each task.

Both of WRT and response time are evaluated with equalizing the number of
clusters in those approaches. The number of clusters (here, we denote N) is firstly
derived by applying “[9] with δopt”, and then other approaches perform merging
steps until the number of clusters reaches N . And both WRT and response time
to be compared among those approaches are mean values in 100 tries. In each
try, the simulation generates a random DAG after P value and R value have
been defined.

5.2 Comparison of WRT

The comparison in terms of WRT is presented in table 1. In the table, variables
are |V |, P , and R. The fourth column means the number of clusters obtained by
“[9] with δopt”. The remained columns are the ratio of WRT to that of “[9] with
δopt”. Lower value means that WRT is efficiently suppressed. From this table,
it can be seen that “[9] with δopt” efficiently suppress WRT with compared to
other approaches in every cases (From No. 1-12). The difference of WRT between
“[9] with δopt” and CASS-II+LB becomes small as size of data among tasks is
large and degree of task parallelism is low (No. 1-3, 7-9). The same behaviors are
applied to the case of LB. On the contrary, The difference of WRT between “[9]
with δopt” and DSC+CM becomes small as size of data among tasks in every
case (No. 1-12), regardless of degree of task parallelism. However, both LB and
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CM do not have any policy for suppressing WRT. Therefore, it is concluded that
an approach which adopts LB or CM does not suppress than an approach which
adopts the three requirements described in section 4.

No. ♯ of Tasks Range of R Range of P ♯ of Clusters [9] with δopt CASS-II+LB DSC+CM LB

1 500 0.5≤R≤ 1.0 1≤P≤2 73 1.000 1.637 1.868 1.602
2 500 4.0≤R≤8.0 1≤P≤2 28 1.000 1.426 1.547 1.530
3 500 8.0≤R≤16.0 1≤P≤2 21 1.000 1.304 1.510 1.553
4 500 0.5≤R≤ 1.0 1≤P≤8 58 1.000 1.256 1.592 1.447
5 500 4.0≤R≤8.0 1≤P≤8 20 1.000 1.657 1.492 1.690
6 500 8.0≤R≤16.0 1≤P≤8 15 1.000 1.732 1.377 1.768
7 1000 0.5≤R≤ 1.0 1≤P≤2 133 1.000 1.908 1.971 1.812
8 1000 4.0≤R≤8.0 1≤P≤2 52 1.000 1.403 1.556 1.573
9 1000 8.0≤R≤16.0 1≤P≤2 38 1.000 1.347 1.470 1.528
10 1000 0.5≤R≤ 1.0 1≤P≤8 103 1.000 1.210 1.642 1.393
11 1000 4.0≤R≤8.0 1≤P≤8 38 1.000 1.684 1.497 1.654
12 1000 8.0≤R≤16.0 1≤P≤8 27 1.000 1.724 1.317 1.718

Table 1. Comparison of WRT

5.3 Comparison of Response Time

The comparison in terms of response time is presented in table 2. Values in 4
approaches are the ratio between response time obtained by the approach to
that of “[9] with δopt”. In every cases (No. 1-12), “[9] with δopt” is smaller than
other approaches. If size of data among tasks is small (e.g., No. 1, 4, 7 and 10),
difference of response time between “[9] with δopt”, CASS-II+LB and DSC+CM
is small. On the other hand, if data size among tasks is large and degree of task
parallelism is low (e.g., No. 3, 9), “[9] with δopt” efficiently suppresses response
time. In other approaches, i.e., CASS-II+LB, DSC+CM and LB, difference of
response time to “[9] with δopt” becomes larger as data size among tasks be-
comes larger, except the case of CASS-II+LB in No. 12. From these results, it
is concluded that an approach which adopts the three requirements described in
section 4.3 has good effect on response time when the input DAG has large data
size among tasks.

No. ♯ of Tasks Range of R Range of P ♯ of Clusters [9] with δopt CASS-II+LB DSC+CM LB

1 500 0.5≤R≤ 1.0 1≤P≤2 73 1.000 1.025 1.050 1.093
2 500 4.0≤R≤8.0 1≤P≤2 28 1.000 1.249 1.292 1.707
3 500 8.0≤R≤16.0 1≤P≤2 21 1.000 1.388 1.576 2.133
4 500 0.5≤R≤ 1.0 1≤P≤8 58 1.000 1.133 1.034 1.300
5 500 4.0≤R≤8.0 1≤P≤8 20 1.000 1.173 1.167 1.768
6 500 8.0≤R≤16.0 1≤P≤8 15 1.000 1.192 1.177 1.878
7 1000 0.5≤R≤ 1.0 1≤P≤2 133 1.000 1.039 1.034 1.113
8 1000 4.0≤R≤8.0 1≤P≤2 52 1.000 1.267 1.388 1.780
9 1000 8.0≤R≤16.0 1≤P≤2 38 1.000 1.389 1.555 2.155
10 1000 0.5≤R≤ 1.0 1≤P≤8 103 1.000 1.135 1.091 1.280
11 1000 4.0≤R≤8.0 1≤P≤8 38 1.000 1.169 1.137 1.720
12 1000 8.0≤R≤16.0 1≤P≤8 27 1.000 1.030 1.158 1.881

Table 2. Comparison of Response Time
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5.4 Discussion

From results obtained by table 1 and 2, it is concluded that a task cluster-
ing heuristic which adopts the three requirements described in section 4.3 has
a good effect on both WRT and response time, if lower bound of cluster size
has appropriately been determined. On the other hand, when data size is small
with compared to task size, response time is closed to other existing approaches.
In such a case, localizing each data transfer among tasks has smaller effect on
reducing response time, because decrease of task parallelism which may be oc-
curred by each merging step may lead to increase of response time. At other
approaches, e.g., CASS-II+LB and DSC+CM neglect lower bound of cluster
size, so that each cluster size may vary according to their merging policies and
structure of the input DAG. As a result, such a variation in each cluster size
may not have bad effect on communication overhead, while maintaining degree
of task parallelism due to a small cluster size. We conclude that three require-
ments described in section 4.3 is an advantageous policy, if the required number
of machines is unknown despite machines must effectively be utilized.

Next we explain relationship between minimizing WRT and response time
obtained after a task scheduling. In a derivation of tlevel value in (3) for each in
task in a cluster, waiting time (idle time) for data arrival from its immediate pre-
decessor tasks in different clusters is neglected. Under the constraint, tlevel(nk)
is the latest start time of nk when every task which has no dependencies to nk

has been executed. Therefore, if data transfer time is small with compared to
task execution time in a DAG, there is possibility that a data has already been
arrived before tlevel(nk). In this case, tlevel(nk) equal to the actual latest start
time of nk, so that minimizing WRT may become synonymous with an upper
bound of actual response time. Since RCP[7] which applied in this simulation
tries to minimize start time for each task, trying to minimize waiting time for
data arrival is well matched to RCP’s scheduling strategy. As a result, we con-
clude that a task scheduling, which adopts the strategy to minimize start time
for each task, is required for minimizing response time.

6 Conclusion and Future Work

In this paper, we presented one method for adjusting each assignment unit size,
i.e., cluster size in order to minimize response time with the small number of
machines in homogeneous distributed systems. To make the number of machines
small, we derived a lower bound of cluster size, i.e., δopt by which an upper
bound of response time is minimized as much as possible. Then we showed
requirements for a task clustering heuristic in order to suppress increase of an
upper bound of response time. One contribution in this paper is to present an
approach for achieving efficient utilization of limited computational resources for
parallel application. Our future work is to derive a lower bound of each cluster
size in heterogeneous systems.
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