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Abstract. Autotuning technology has emerged recently as a systematic process

for evaluating alternative implementations of a computation to select the best-

performing solution for a particular architecture. Specialization optimizes code

customized to a particular class of input data. This paper presents a compiler op-

timization approach that combines novel autotuning compiler technology with

specialization for expected data set sizes of key computations, focused on matrix

multiplication of small matrices. We describe compiler techniques developed for

this approach, including the interface to a polyhedral transformation system for

generating specialized code and the heuristics used to prune the enormous search

space of alternative implementations. We demonstrate significantly better perfor-

mance than directly using libraries such as GOTO, ATLAS and ACML BLAS

that are not specifically optimized for the problem sizes on hand. In a case study

of nek5000, a spectral element based code that extensively uses the specialized

matrix multiply, we demonstrate a performance improvement for the full appli-

cation of 36%.

1 Introduction

The complexity and diversity of today’s parallel architectures overly burdens applica-

tion programmers in porting and tuning their code. At the very high end, processor

utilization is notoriously low, and the high cost of wasting these precious resources mo-

tivates application programmers to devote significant time and energy to tuning their

codes. This tuning process must be largely repeated to move from one architecture to

another, as too often, a code that performs well on one architecture faces bottlenecks

on another. As we enter the era of petascale systems, the challenges facing application

programmers in obtaining acceptable performance on their codes will only grow.

To assist the application programmer in managing this complexity, much research

in the last few years has been devoted to auto-tuning software that employs empiri-

cal techniques to evaluate a set of alternative mappings of computation kernels to an

architecture and select the mapping that obtains the best performance [4, 18, 8, 15, 16].

In this paper, we consider collaborative autotuning tools, which works with appli-

cation programmers or library developers to automate their performance tuning tasks



and permit them to express their algorithms in architecture-independent code. We de-

scribe a set of compiler tools that can be used by savvy programmers to express aspects

of the tuning of their code that will be carried out systematically by the tools to arrive at

a highly optimized implementation. This paper focuses on a particular role for autotun-

ing, used in conjunction with specialization for specific classes of known input sizes.

The autotuner can derive highly optimized specialized versions of a computation for

known input sizes, and generate a library of these specialized versions. At run time, the

execution environment can invoke the appropriate specialized version from the library.

For this paper, we focus this autotuning process on generating a matrix multiply li-

brary, customized for specific problem sizes. In particular, we focus on optimizing small

matrices of known sizes, where specialization is applicable. While highly-optimized

BLAS libraries (native, ATLAS, GOTO, etc.) are available on every platform, they are

tuned for large (typically, square) matrices, and the most successful optimization strate-

gies for small matrices are different. Thus, specialization for small matrices can yield

better performance results than manually-tuned high-performance libraries, but auto-

tuning is needed to identify the best-performing implementation of each problem size.

In this paper, we describe a process that combines autotuning and specialization

compiler technology, and collaborates with the application (or library) programmer, tar-

geting the Opteron Phenom processor. We demonstrate this approach in a case study us-

ing nek5000, a scalable spectral element code whose execution is dominated by what

are essentially matrix multiplies of very small, rectangular matrices. We use CHiLL,

a polyhedral loop transformation framework with a script interface, to describe the

space of specialized implementations and automatically generate optimized code. Using

heuristics to prune the search space of possible implementations, a set of variants gener-

ated by CHiLL are then measured and compared to derive a library of implementations

specialized to problems sizes for a particular problem or domain. The resulting BLAS

calls are up to 2.3X faster than the original implementation, and the overall nek5000

application performance is improved by 36% on one node, as compared to an already

manually-tuned version of the code. This paper makes three contributions:

– We describe an approach to collaborative autotuning combined with specialization

that uses compiler tools and automation to derive highly-optimized matrix multiply

libraries for expected input data sets.

– The code our compiler generates yields performance that is as much as 11.2x faster

than the icc compiler, 3.3x faster than the hand-coded ACML library, 4.5x faster

than ATLAS, and even 2.1x faster than the Goto BLAS.

– We demonstrate the impact of this approach on a case study of a production code

nek5000, yielding up to 36% performance improvements over manual tuning.

This process could be repeated to specialize matrix multiply for other applications

for similar architectures supporting multimedia extensions such as SSE-3, and na-

tive compilers without any modification. Because it is based on compiler technol-

ogy, it can also be applied to other computations beyond dense linear algebra.

The remainder of the paper is organized as follows. Section 2 presents the collab-

orative autotuning process and describes the compiler technology used in this process.

We discuss the experimental results in Section 3, followed by a discussion of related

work and a conclusion.



Fig. 1. Overview of our approach

2 Compiler Technology: Autotuning and Specialization

Collaborative autotuning tools automate performance tuning tasks with assistance from

the application programmer. Systematic tasks such as code triage, code transformation

and code generation can be performed by tools, resulting in highly optimized code

implementations. The application programmer assists the tuning process by identifying

performance issues, determining optimization strategies (including specialization) and

guiding the evaluation process.

In this section we describe our collaborative autotuning methodology and how a

programmer might use tools to automate several aspects of performance tuning. Fig-

ure 1 shows the performance tuning steps in our methodology (code triage, code out-

lining, autotuning for specialized codes and code generation) and how they might be

performed using autotuning tools with assistance from the application programmer.

Code triage identifies computations that have optimization opportunities and per-

formance issues. Code outlining derives a standalone kernel for the key computations

discovered in the triage process, along with the kernel’s input data and parameter values

collected during application runs. Once the bottlenecks of an application are identified

and outlined into kernels, the extracted kernels need to be specifically tuned for the

target architecture so that the best possible performance can be achieved (autotuning

and code generation). The triage and autotuning steps can be automated [1], but further

discussion is beyond the scope of this paper.

In this section, we describe our methodology in applying compiler technology to

this autotuning and specialization process. First we describe the optimization strategy

to be applied to this code. We use the CHiLL loop transformation framework to gen-

erate all desired transformed codes specialized for specific matrix sizes. Then we use

empirical search to find the best optimization parameters. Here we apply a set of com-

piler heuristics to reduce the search space to something manageable. Finally, we create

a library of specialized codes and replace invocations to the original computation with

calls to the library.
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Fig. 2. Performance of BLAS libraries on matrix multiplication.

2.1 Optimization Strategy

For large matrices that exceed the capacity of various levels of cache, performance

BLAS libraries such as ACML (native), ATLAS, and GOTO all perform well, achieving

above 70% of peak performance as seen in Figure 2(a). This is because they apply ag-

gressive memory hierarchy optimizations including code transformations such as data

copy, tiling and prefetching to reduce memory traffic as well as to hide memory latency.

Additional code transformations that can improve instruction-level parallelism (ILP)

are performed to optimize the computation. Several examples in the literature describe

this general approach [4, 18, 6, 9, 20].

However if we look closer at matrices of size 10 or smaller, those same BLAS

libraries perform below 25% of peak performance as seen in Figure 2(b). This is because

the optimization strategy for small matrices should be different. Since these matrices fit

within even small L1 caches, the focus of optimization should be on managing registers,

exploiting ILP in its various forms, and reducing loop overhead. For these purposes,

we can use loop permutation and aggressive loop unrolling for all loops in a nest. If

performed across outer loops of a loop nest, the latter optimization is often referred

to as unroll-and-jam, indicating that outer loops are unrolled and resulting copies of

inner loops are fused (jammed) together. To the backend compiler, unrolling exposes

opportunities for instruction scheduling, scalar replacement and eliminating redundant

computations. Loop permutation may enable the backend compiler to generate more

efficient single-instruction multiple-data(SIMD) instructions by bringing a loop with

unit stride access in memory to the innermost position, as required for utilization of

multimedia extension ISAs.

Thus, in our set of experiments, we generate code using the combination of loop

permutation and unroll-and-jam. In some cases, where the matrices are small, we ob-

tain the best performance by coming close to fully unrolling all of the three loops in

the nest. However, when applied too aggressively, loop unrolling can generate code that

exceeds the instruction cache or register file capacity. Therefore, we use autotuning to

identify the unroll factors that navigate the tradeoff between increased ILP and exceed-

ing capacity of the instruction cache and registers.



2.2 Specialization and Transformation Using CHiLL

One of the key challenges that a programmer faces during the tuning process is to

try many different transformation strategies in order to find the best solution. This is

an extremely slow and error prone process. CHiLL allows the programmer to apply

complex transformation strategies to a loop nest by specifying a series of composable

loop transformations using a high-level script interface [5, 7, 16].

CHiLL is a state-of-the-art polyhedral loop transformation framework designed

with the autotuning environment in mind. Its high-level script interface can be used

by application programmers or compilers for generating high-quality code. Transfor-

mations supported by CHiLL include loop tiling, index set splitting, loop permutation,

unroll-and-jam, fission, fusion, unimodular transformations and data copying. Binding

of optimization parameters (such as unroll factors in this experiment) within a CHiLL

script can be performed by an external autotuning search engine, such as the one de-

scribed in the next section, or as in [16].

Figure 3 illustrates the use of CHiLL for optimizing matrix multiplication with

small input sizes. The loop nest in Figure 3(a) is imperfectly nested since array C is

initialized before multiplication. Figures 3(b), (c) and (d) show three CHiLL scripts

that correspond to different versions of the code in (a), with different loop orders.

To permute the loop order the programmer only needs to specify one permute

command, where the loop numbers indicate the loop order after permutation. Loops are

numbered starting at 1 from the outermost loop and increasing as we move inward. The

scripts in (c) and (d) permute the loop order to j,k,i and k,i,j, respectively, while the

script in (b) maintains the original loop order i,j,k. Figures 3(e) and (f) show the trans-

formed code versions after permuting the loops as specified in (c) and (d), respectively.

For brevity, in (e) and (f) we show the simplest versions where all unroll amounts are 1.

The command unroll performs unroll-and-jam if the target loop is an outer loop

and its inner loops can be fused together. The meaning of unroll(stmt,loop,factor) is

to unroll the individual statement stmt (numbered from 0) within loop by unroll factor

factor (shown as unbound variables). The scripts in Figures 3(b), (c) and (d) are different

in the number of unroll commands; this is necessary because the number of loops

are different after permutation, as shown in (a), (e) and (f), depending on the loop order.

The known command provides support for specialization, allowing the program-

mer to express known values such as input sizes and loop bounds. Within CHiLL,

known adds additional conditions to the iteration spaces extracted from the original

code. These conditions improve the quality of the generated code, permitting different

specialized versions and determining, for example, whether unroll factors evenly divide

loop bounds, so that the compiler can avoid generating cleanup code. From the scripts

in (b), (c) and (d), CHiLL automatically generates correct transformed code. Figure 3(g)

shows the result of script (c) when all unroll sizes u1, u2 and u3 are set to 2.

The flexibility provided by CHiLL’s script interface greatly helps programmers,

since they can now focus on how the transformations affect performance instead of the

details of generating correct transformed code. The above scripts plus additional ones

for different loop orders combined with eight different known statements were what

we used to tune nek5000. The next section discusses the heuristics used to reduce the

number of scripts and their parameter space for larger specialized matrix sizes.



do 10, i=1,M

do 20, j=1,N

s0: c(i,j) = 0.0d0

do 30, k=1,K

s1: c(i,j) = c(i,j) + a(i,k)*b(k,j)

30 continue

20 continue

10 continue

(a) original.f

permute([1,2,3])

known(M=N=K=10)

unroll(1,1,u1)

unroll(1,2,u2)

unroll(1,3,u3)

(b) loop order i,j,k

permute([2,3,1])

known(M=N=K=10)

unroll(1,1,u1)

unroll(1,2,u2)

unroll(1,3,u3)

unroll(0,3,u3)

(c) loop order j,k,i

permute([3,1,2])

known(M=N=K=10)

unroll(1,1,u1)

unroll(1,2,u2)

unroll(1,3,u3)

unroll(0,2,u2)

unroll(0,3,u3)

(d) loop order k,i,j

do 2, t4 = 1, 10, 1

do 4, t6 = 1, 10, 1

do 2, t2 = 1, 10, 1 c(t4, t6) = 0.0d0

do 4, t6 = 1, 10, 1 4 continue

c(t6, t2) = 0.0d0 2 continue

4 continue do 6, t2 = 1, 10, 1

do 6, t4 = 1, 10, 1 do 8, t4 = 1, 10, 1

do 8, t6 = 1, 10, 1 do 10, t6 = 1, 10, 1

c(t6,t2)=c(t6,t2)+a(t6,t4)*b(t4,t2) c(t4,t6)=c(t4,t6)+a(t4,t2)*b(t2,t6)

8 continue 10 continue

6 continue 8 continue

2 continue 6 continue

(e) After loop permutation in (c) (f) After loop permutation in (d)

do 2, t2 = 1, 9, 2

do 4, t6 = 1, 9, 2

c(t6, t2) = 0.0d0

c(t6, t2+1,) = 0.0d0

c(t6+1, t2) = 0.0d0

c(t6+1, t2+1) = 0.0d0

4 continue

do 6, t4 = 1, 9, 2

do 8, t6 = 1, 9, 2

c(t6, t2) = c(t6, t2) + a(t6, t4) * b(t4, t2)

c(t6, t2+1) = c(t6, t2+1) + a(t6, t4) * b(t4, t2+1)

c(t6, t2) = c(t6, t2) + a(t6, t4+1) * b(t4+1, t2)

c(t6, t2+1) = c(t6, t2+1) + a(t6, t4+1) * b(t4+1, t2+1)

c(t6+1, t2) = c(t6+1, t2) + a(t6+1, t4) * b(t4, t2)

c(t6+1, t2+1) = c(t6+1, t2+1) + a(t6+1, t4) * b(t4, t2+1)

c(t6+1, t2) = c(t6+1, t2) + a(t6+1, t4+1) * b(t4+1, t2)

c(t6+1, t2+1) = c(t6+1, t2+1) + a(t6+1, t4+1) * b(t4+1, t2+1)

8 continue

6 continue

2 continue

(g) A complete example of script in (c) with u1=u2=u3=2

Fig. 3. Example of CHiLL scripts and the generated codes.



2.3 Autotuning: Heuristics for Pruning the Search Space

With all the transformation scripts ready, the next step is to search for the best optimiza-

tion parameters by invoking CHiLL to generate actual code variants and measure their

performance on the target machine. For some of the smaller matrix sizes, the search

space is sufficiently small that exhaustive search is feasible, but for the larger matrices,

we must develop heuristics to prune the search space to complete the experiments. We

extract the heuristics from the exhaustive search results of small matrices, and use them

in pruning the space of larger matrices. In this section, we describe the pruning heuris-

tics we used, and then describe how they are extracted from the results of an exhaustive

search on a particular matrix size in the next section. We generate only the code variants

that satisfy all four heuristics.

Heuristic 1: Loop order. Certain loop orders that lead to lower-performance code vari-

ants are pruned from the search. We select the loop orders based on the performance

evaluations for a particular matrix size as described in Section 3.

Heuristic 2: Instruction cache. The total unroll amount for all three loops is limited by

a constant C that is likely to fill the L1 instruction cache. With this limit, the search

space size is restricted to a number of tuples (Um, Uk, Un) where Um, Uk and Un are

the unroll amounts for m, k and n-loop respectively, and satisfy Um × Uk × Un < C.

Heuristic 3: Unit stride on one loop. Related to heuristic 1, the search is restricted to

only those tuples (Um, Uk, Un) where at least one of Um, Uk or Un is 1, to achieve spa-

tial locality within a SIMD register between instances of an array access from consecu-

tive iterations. With this heuristic, the search space is pruned by the ratio of mk+kn+mn

mkn

= 1
n

+ 1
m

+ 1
k

.

Heuristic 4: Unroll factor divides iteration space evenly. When a loop of iteration count

m is unrolled by a factor of u, the last ‘m mod u’ iterations have to be executed in a

clean-up loop that is not unrolled. While the cost of executing in the clean-up loop is

negligible when the iteration count is large, it is significant when the matrices are small.

The search space is pruned by a factor of
σ0(m)σ0(k)σ0(n)

mkn
where σ0(m) is the number

of divisors of m.

The four heuristics described above are shown to be effective in finding high perfor-

mance code for small-matrix multiplication on a particular architecture within a reason-

able search time as shown in Section 3. However, at a higher level, the framework we

describe can be used for other application-architecture pairs just by replacing heuristics

and code transformations. As for the four heuristics in our example, the heuristics for

other settings can reflect the features of the architecture, compiler and/or the applica-

tion. Since the knowledge about a particular architecture or application is enclosed in a

set of code transformations and heuristics as components, it is straightforward to adapt

our framework to another application and/or architecture. Such heuristics on compilers,

architectures and application kernels can be shared among users by collecting them in

a 3D-table that shows architectures, kernels and compilers on each of the three axes.

2.4 Building the Library

After each code variant is generated, it is compiled and linked with the driver that

measures and records the performance. A careful measurement process must be used to



select the best-performing code variant. We consider measurement overhead and perfor-

mance fluctuations in deriving our measurements. Measurement overhead is significant

for the short execution times of matrix multiplication for small matrices; we reduce this

overhead by increasing the number of executions of the code per measurement (500

times, as described in the next section). Because of performance fluctuations, such as

servicing interrupts and varying cache states, which occur somewhat randomly, we ex-

ecute a large number of independent measurements (100 as in the next section), and

take the minimum execution time. As a second consideration, the compiler flags and

array declarations have to be carefully selected so that the backend compiler can gen-

erate the most efficient code whenever possible. For example, alignment information

of arrays is important for the backend compiler to generate efficient SIMD instructions.

Such information can be delivered to the backend compiler by making the code variants

and the driver as simple as possible and by using language extensions supported by the

compiler and the command line options.

(1) mxm(a, M, b, K, c, N){
(2) if (all a, b and c are aligned to the SIMD register width){
(3) if (M == 10){
(4) if (K == 8){
(5) if (N == 10){ mxm10810(a,b,c); return;}
(6) if (N == 64){ mxm10864(a,b,c); return;}
(7) } else if (K == 10){
(8) if (N == 10){ mxm101010(a,b,c); return;}
(9) if (N == 100){ mxm1010100(a,b,c); return;}
(10) } else if (M == 100 && N == 10){
(11) if (K == 8){ mxm100810(a,b,c); return;}
(12) if (K == 10){ mxm1001010(a,b,c); return;}
(13) } else if (M == 8 && K == 10){
(14) if (N == 8){ mxm8108(a,b,c); return;}
(15) if (N == 100){ mxm810100(a,b,c); return;}
(16) }}
(17) mxm44 0(a, M, b, K, c, N);}

Fig. 4. A template of the wrapper code for specialized matrix multiplication routines.

When the evaluation is complete for the generated code variants, the best perform-

ing variant is selected for each matrix size. In addition to the object files of the code

variants, a wrapper code is necessary to call the specialized matrix multiplication rou-

tines depending on the matrix sizes. This wrapper code takes the same number of ar-

guments and has the same name as the existing default implementation to provide the

same interface to the rest of nek5000. Figure 4 shows the wrapper code that is used

to call eight specialized routines for the sizes in Table 1. First, at line 2, the array ad-

dresses are checked for alignment to the SIMD register size. If all arrays are aligned, the

three arguments for matrix size are examined and a specialized code is invoked if one

is available that matches the three parameters; otherwise, the original manually-tuned
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Fig. 5. Block diagram describing autotuning tools and experiment.

version is invoked. Finally, a library is generated from the wrapper code and the tuned

object codes.

3 Experiments

This section demonstrates the performance impact of the approach and set of compiler

tools described in the previous two sections, using nek5000.

3.1 Experimental Environment

The platform for these experiments is a 2.5 GHz AMD Opteron workstation that has

four cores. The machine has separate 64KB L1 instruction and data caches, an inte-

grated 512 KB L2 cache, 2 MB L3 cache and 4 GB of memory. Since it runs 64-bit

Linux (Ubuntu 8.04-x86 64), all 16 XMM registers are available for use. CHiLL

version 0.1.5 [7] and the Intel compiler version 10.1 [12] are used to transform and

compile the code variants. All performance measurements are on single core unless

mentioned otherwise.

3.2 Generating the Library

Figure 5 shows the block diagram of the experimental flow. It takes as input matrix

sizes for which specialization is desired, a matrix multiplication kernel (vanilla.f),

shown in Figure 3(a) and a driver (driver.c) that measures the performance using

PAPI TOT CYC. The driver executes a variant 500 times per measurement warming

up the L1 data cache, collects 100 such measurements and records the minimum of

the 100 measurements as the final performance of the variant. We produce as output a

high-performance library of specialized matrix multiplication routines. The parameters

m, k and n are used in defining matrix sizes as in C(m, n) = A(m, k)×B(k, n). Code

variants are generated in Fortran but the driver is a C function. To have the compiler to

generate aligned SIMD instructions, attribute ((aligned (16))) qualifier
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is added to array declarations and the interprocedural optimization feature was used

with -fast for ifort and -O3 -ipo for icc.

The AMD Phenom processor’s peak double-precision floating point operations per

cycle is 4, and the machine’s peak is 10 GFlops. We use percentage of machine’s peak

as the main metric:

percentage of machine’s peak =

m×k×n×2

measured run time in cycles
× 100

machine’s peak floating point operations per cycle

We optimize nek5000 in the context of the helix2 input data set. From profiling

nek5000 for the helix2 input, we found that a procedure called mxm44 0 takes

around 60% of total execution time. This function is a manually tuned implementation

of matrix multiply. mxm44 0 takes the same set of arguments as mxm of Figure 4. The

main loopnest is unrolled by 4 for each of m and n loop. By instrumentingmxm44 0, we

found the number of calls for each matrix size across all of its invocations. We estimate

the computational importance of each matrix size by multiplying the number of calls

with the product of the sizes of the three dimensions.

Table 1. Pruning of search space by heuristics(% of remaining search space).

m,k,n Total Loop Order SIMD EvenUnl I-Cache All heuristics LO Ui Uk Uj

8,10,8 3840 1920(50.0) 1194(31.1) 384(10.) 3840(100.0) 111(2.9) ijk 8 10 4

10,8,10 4800 2400(50.0) 1398(29.1) 384(8.0) 4800(100.0) 111(2.3) ijk 1 8 5

10,10,10 6000 3000(50.0) 1626(27.1) 384(6.4) 6000(100.0) 111(1.9) jik 1 9 5

10,8,64 30720 15360(50.0) 6906(22.5) 672(2.2) 28170(91.7) 174(0.6) ijk 1 8 4

8,10,100 48000 24000(50.0) 10578(22.0) 864(1.8) 38940(81.1) 216(0.5) ijk 1 10 4

100,8,10 48000 24000(50.0) 10578(22.0) 864(1.8) 38940(81.1) 216(0.5) jki 1 8 5

10,10,100 60000 30000(50.0) 11886(19.8) 864(1.4) 45264(75.4) 216(0.4) jik 1 10 4

100,10,10 60000 30000(50.0) 11886(19.8) 864(1.4) 45264(75.4) 216(0.4) jik 1 10 10

The first column in Table 1 shows the top eight matrix sizes chosen from the list

sorted in decreasing order of importance, comprising about 74% of the overall estimated

computation for mxm44 0. The second column of Table 1 shows the size of the search
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space, the product of the number of all loop orders and unroll factors for each of the

three loops. For example, for a size (8,10,8), the size of the search space is 3840 =
6× 8× 10× 8.

3.3 Evaluating the Pruning Heuristics

The set of heuristics used to prune the space of matrix multiply implementations is

based on data collected during the exhaustive search for a particular matrix size, 10 ×
10× 10. The assumption is that the search space of implementations for a small matrix

size (such that data fit in the L1 data cache) shares characteristics with the search space

of other small matrix sizes. Good candidates for building pruning heuristics for other

input sizes are characteristics that affect performance in predictable patterns indepen-

dently of input sizes. The characteristics observed in this experiment are loop order,

spatial locality across loop iterations, and instruction cache misses due to code size. We

do not include data cache behavior that is dependent on matrix size, and consider only

sizes such that all data fit in the L1 data cache.

For matrix size (10,10,10) the exhaustive search takes about 7 hours when 6 search

processes are run in parallel, one for each loop order. Figure 6(a) shows the distribution

of code variants for size (10,10,10) along the X-axis as a percentage of peak. The fastest

runs at 59.29% and the slowest at 7.14% of peak.

Figure 6(b) shows the number of code variants that perform higher than 45% of ma-

chine’s peak for each loop order. Each line in the graph represents a different loop order,

where ijk represents the original loop order as in Figure 3(a). Only three loop orders,

ijk, jik and jki, result in performance higher than 49% of peak for size (10,10,10).

Therefore the first heuristic prunes all other loop orders (ikj, kij and kji) from the

search space of other matrix sizes.

The solid line of Figure 7(a) shows the number of code variants as the percentage of

the highest performance. For example, 4 at 90% means that there are 4 code variants that

perform higher than or equal to 90% but lower than 95% of the highest performance.

The dashed line shows the number of code variants with at least one unroll factor of 1

(no unroll). As discussed in Section 2.3, this heuristic is used to filter out code variants

without spatial locality across adjacent iterations.

Figure 7(b) is the same as (a) except that the dashed line represents the number

of code variants whose three unroll factors evenly divide the corresponding iteration



count. For example, an iteration count of 10 has four even unroll factors, 1, 2, 5 and 10.

If the iteration count is 10 for all three loops, there are 64 (= 43) variants that satisfy

this heuristic for each loop order.

The heuristic concerning L1 instruction cache misses was obtained by increasing

the square matrix size and executing the fully unrolled loops for each size. The in-

struction cache misses, measured after warming up the cache, start increasing when the

matrix size is 13 or larger. Since the total unroll factor when N=13 is 2197(= 133), this

heuristic limits the total unroll factor to less than or equal to 2197, for all matrix sizes.

Columns 3-6 of Table 1 show the size of the remaining search space when each of

the four heuristics is used in isolation to prune the search space. The seventh column

of Table 1 shows the size and the ratio of the remaining space when all four heuristics

are used. As the size of the search space increases, the pruning heuristics reduce the

percentage of the remaining search space down to less than 1%. We used these heuristics

to select the best variants for the five larger sizes. When these heuristics are used, the

tuning time for each matrix size is less than an hour from beginning of code generation

to the completion of evaluation. The four columns on the right show the loop order and

the three unroll factors for i, k and j-loop for the selected eight code variants.

3.4 Performance Results

We chose the fastest variant for each matrix size to create a library of eight special-

ized matrix multiplication routines and the wrapper routine. This section presents the

performance results obtained by using this specialized library.

Comparison with other BLAS implementations We compare this library against

the naive vanilla.f matrix multiply version from Figure 3(a), the manually opti-

mized mxm44 0 and mxf8/10 implementations, and for completeness, several BLAS

performance libraries, as shown in Figure 8. The comparison is performed for the

eight matrix sizes we selected for tuning. The X-axis represents matrix sizes in the

form of “m,k,n” where the two input matrices are m × k and k × n in size. The Y-

axis represents the percentage of machine’s peak. Although BLAS libraries are highly

tuned for large matrix multiply, they are not optimized for small matrix multiply be-

cause small matrix multiply requires aggressive unrolling and different loop orders

that vary for the slightest change in matrix sizes, a completely different optimiza-

tion strategy from the large matrices. For ATLAS, we use the architectural default for

AMD64K10h64SSE3 in version 3.8.2. The versions for ACML and GOTO BLAS are

4.1.0 and goto barcelona-r1.26, respectively.

The performance of mxm44 0 is roughly flat around 23% of peak across all sizes.

mxf8/10 is also included in the NEK5000 code although it is not used when the K di-

mension is greater than or equal to 4. For the eight small matrices, however, mxf8/10

is faster than mxm44 0 achieving close to 40% of peak. We include vanilla.f to

show the quality of the code generated by the native compiler from the naive implemen-

tation. The performance is around 7% of peak. ACML and GOTO BLAS are manually

implemented BLAS routines. While their performance reaches 90% of peak and higher

for large square matrices, the performance for the three smallest matrices is still less
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Fig. 8. Speedups of the library generated by our approach

than 30% of peak due to the reason we mentioned above. TUNE represents the code

tuned with our approach for the eight matrix sizes in the X-axis. Compared to the three

BLAS libraries that take 13 parameters, TUNE takes only 6 parameters as in Figure 4.

For the eight sizes, TUNE is the fastest reaching as high as 74% of peak. Compared

to the default implementation mxm44 0, TUNE is more than 2.3 times faster. To show

the effect of fewer function parameters of TUNE, TUNE13 implements the wrapper

in Figure 4 within a dgemm reference implementation [2], and thus supports not only

the standard 13-parameter interface but also the full semantics. For the eight sizes, the

performance drop caused by the larger number of parameters is not significant.

Performance of Nek5000 on Helix2 on Phenom Next, we measured the sequential

performance improvement for nek5000 for the helix2 problem. For this experi-

ment, we used the time tool in Linux to measure the wall clock time. We ran the whole

program 10 times for 50 time steps and took the smallest run time as the measurement

for each of the baseline that uses mxm44 0 and the run that uses the specialized library.

When the tuned library is used, the run time drops significantly from 190 seconds to

140 seconds. This is a speedup of 1.36X over the baseline. Moreover, this speedup

is achieved through a simple empirical tuning approach and replacing the hand-tuned

code. This experiment demonstrates the power of empirical performance tuning and

code specialization.

4 Related Work

There have been much prior work on automatically tuning libraries. PHiPAC and AT-

LAS tune matrix multiplication code automatically for many target machines [4, 18].



FFTW is a self-tuning library designed to generate high performance code for Dis-

crete Fourier Transforms [8]. SPIRAL is a high-performance code generation system

for digital signal processing transforms [15]. OSKI combines install-time evaluations

with run-time models to tune sparse-matrix vector multiplication and other solvers such

as triangular solver [17].

Compiler assisted autotuning and tools facilitating code transformations have also

been extensively studied. Knijnenburg et. al. compared various search algorithms in the

space of tiling two dimensions and unrolling one dimension for multiple loop orders of

matrix multiplication [14]. Chen et. al. combine compiler models and heuristics with

guided empirical evaluations to take advantage of their complementary strengths [6].

Tiwari et. al. combine Active Harmony and CHiLL to generate and evaluate code vari-

ants. They use a search strategy similar to the Nelder-Mead algorithm [16]. Hartono

et. al. use annotations in the code to describe performance improving transformations

for C programs [10]. POET is a scripting language for parameterizing complex code

transformations [19], which can be used in an autotuning process as well.

For tuning matrix multiply for small matrices, the work most closely related to

ours is Herrero and Navarro’s, which focus on specializing matrix multiplication for

small matrices [11]. However, their code variants were generated manually and it’s

not clear how many code variants in the parameter space were evaluated. In contrast,

our heuristic-based parameter space pruning is automated, and thus can select the best

code from a larger set of code variants. Kaushik et. al. compared a hand-optimized

tensor matrix vector multiplication routine with mxm in nek5000 and the dgemm of

Intel’s MKL, and showed the hand-optimized routine performed the best for small,

highly rectangular matrices [13]. Barthou et. al. reduce the search space by separating

optimizations for in-cache computation kernels from those for memory hierarchy [3].

5 Conclusion

This paper describes an autotuning approach for specializing matrix multiply according

to problem size, applied to case study nek5000. The tuning process involves providing

a set of parameterized optimization scripts to the CHiLL polyhedral framework that

generates specialized code. A set of heuristics prune the space of parameter values and

variants as part of autotuning the implementation. Specialization for matrix size and a

focus on optimization strategies for small matrices enables our automated approach to

obtain better performance than carefully hand-coded BLAS libraries. The specialized

code our compiler generates yields performance that is as much as 11.2x faster than

the icc compiler, 3.3x faster than the hand-coded ACM L library, 4.5x faster than

ATLAS, and even 2.1x faster than the Goto BLAS. We show speedups of more than

2.3X on the core computation as compared to already manually tuned matrix multiply

in nek5000, and performance improvement for the full application is 36% on one

node. Looking forward, this paper shows an approach to tuning code that is repeatable,

and permits the application to maintain high-level, architecture-independent code.

Acknowledgment This work was supported in part by the Office of Advanced Scientific

Computing Research, Office of Science, U.S. Department of Energy, under Contract

DE-AC02-06CH11357.



References

1. http://rosecompiler.org/.

2. http://www.netlib.org/blas/.
3. Denis Barthou, Sebastien Donadio, Patrick Carribault, Alexandre Duchateau, and William

Jalby. Loop optimization using hierarchical compilation and kernel decomposition. In Inter-

national Symposium on Code Generation and Optimization, San Jose, CA, 2007.

4. Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix multi-

ply using PHiPAC: a portable, high-performance, ANSI C coding methodology. In Interna-

tional Conference on Supercomputing, pages 340–347, Vienna, Austria, 1997.

5. Chun Chen. Model-Guided Empirical Optimization for Memory Hierarchy. PhD thesis,

University of Southern California, 2007.

6. Chun Chen, Jacqueline Chame, and Mary Hall. Combining models and guided empirical

search to optimize for multiple levels of the memory hierarchy. In International Symposium

on Code Generation and Optimization, March 2005.

7. Chun Chen, Jacqueline Chame, and Mary Hall. CHiLL: A framework for composing high-

level loop transformations. Technical Report 08-897, University of Southern California,

Computer Science Department, 2008.

8. Matteo Frigo and Steven G. Johnson. The fastest fourier transform in the west. Technical

Report MIT-LCS-TR728, MIT Lab for Computer Science, 1997.

9. John A. Gunnels, Robert A. Van De Geijn, and Greg M. Henry. FLAME: Formal linear

algebra methods environment. ACM Transactions on Mathematical Software, 27, 2001.

10. Albert Hartono, Boyana Norris, and P. Sadayappan. Annotation-based empirical perfor-

mance tuning using orio. In IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS), Rome, Italy, 2009.
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