
Efficient Program Compilation through
Machine Learning Techniques

Gennady Pekhimenko
IBM Canada

Angela Demke Brown
University of Toronto

Motivation

My cool
program

Compiler
-O2

DCE

Peephole

Unroll

Inline
Executable

But what to do if executable is slow?

Replace –O2 with –O5

Unroll
Unroll

Unroll
Unroll

Unroll
Unroll

Optimization
100New

Fast
Executable

1-10 minutes

few seconds

Unroll

Inline

Peephole

DCE

Motivation (2)

Compiler
-O2

Our cool
Operating
System

1 hour

Executable

Too slow!

Compiler
-O5

20 hours

New
Executable

We do not have that much time

Why did it happen?

Basic Idea

Unroll
Unroll

Unroll
Optimization

100

Do we need all these optimizations for every function?

Probably not.

Compiler writers can typically solve this problem, but how ?

1. Description of every function
2. Classification based on the description
3. Only certain optimizations for every class

Machine Learning is good for solving this kind of problems

Overview

 Motivation

 System Overview

 Experiments and Results

 Related Work

 Conclusions

 Future Work

Initial Experiment

3X difference on
average

Initial Experiment (2)

0

100

200

300

400

500

b
zi

p
2

cr
a

ft
y

e
o

n
ga

p
gz

ip
m

cf
vo

rt
e

x
vp

r
a

m
m

p
a

p
p

lu a
rt

e
q

u
a

ke
fa

ce
re

c
fm

a
3

d
ga

lg
e

l
lu

ca
s

m
e

sa
m

gr
id

si
xt

ra
ck

sw
im

w
u

p
w

is
e

Time, secs

Benchmarks

SPEC2000 execution time at –O3 and –qhot –O3

"-O3"

"-qhot -O3"

Classification
parameters

Our System

Prepare
• extract features
• modify heuristic values
• choose transformations
• find hot methods

Gather Training Data

Compile Measure
run time

Learn
Logistic Regression Classifier

Best
feature
settingsOffline

Deploy

TPO/XL Compiler
set heuristic values

Online

Data Preparation

Three key elements:

 Feature extraction

 Heuristic values modification

 Target set of transformations

• Total # of insts
• Loop nest level
• # and % of Loads, Stores,
Branches
• Loop characteristics
• Float and Integer # and %

• Existing XL compiler is
missing functionality
• Extension was made to the
existing Heuristic Context
approach

• Unroll
• Wandwaving
• If-conversion
• Unswitching
• CSE
• Index Splitting ….

Gather Training Data
 Try to “cut” transformation backwards (from

last to first)

 If run time not worse than before,
transformation can be skipped

 Otherwise we keep it

 We do this for every hot function of every test

The main benefit is linear complexity.

Late
Inlining

Unroll Wandwaving

Learn with Logistic Regression

Function
Descriptions

Best Heuristic
Values

Input Classifier

• Logistic Regression
• Neural Networks
• Genetic Programming

Output.hpredict
files

Compiler +
Heuristic Values

Deployment

Online phase, for every function:

 Calculate the feature vector

 Compute the prediction

 Use this prediction as heuristic context

Overhead is negligible

Overview

 Motivation

 System Overview

 Experiments and Results

 Related Work

 Conclusions

 Future Work

Experiments

Benchmarks:

SPEC2000

Others from IBM customers

Platform:

IBM server, 4 x Power5

1.9 GHz, 32GB RAM

Running AIX 5.3

Results: compilation time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
b

zi
p

2
cr

af
ty

eo
n

ga
p

gz
ip

m
cf

vo
rt

ex vp
r

am
m

p
ap

p
lu ar
t

eq
u

ak
e

fa
ce

re
c

fm
a3

d
ga

lg
el

lu
ca

s
m

es
a

m
gr

id
si

xt
ra

ck
sw

im
w

u
p

w
is

e
G

eo
M

ea
n

Normalized
Time

Benchmarks

Oracle

Classifer

2x
average
speedup

Results: execution time

0

50

100

150

200

250

300

350
b
zi
p
2

cr
af
ty

eo
n

ga
p

gz
ip

m
cf

vo
rt
ex vp
r

am
m
p

a
p
p
lu ar
t

eq
u
ak
e

fa
ce
re
c

fm
a3
d

ga
lg
el

lu
ca
s

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
u
p
w
is
e

Time, secs

Benchmarks

Baseline

Oracle

Classifer

New benchmarks: compilation time

0

0.2

0.4

0.6

0.8

1

Normalized
Time

Benchmarks

Classifier

New benchmarks: execution time

0

50

100

150

200

250

300

350

apsi parser twolf dmo argonne

Time, secs

Benchmarks

Baseline

Classifer

4%
speedup

Overview

 Motivation

 System Overview

 Experiments and Results

 Related Work

 Conclusions

 Future Work

Related Work

 Iterative Compilation

 Pan and Eigenmann

 Agakov, et al.

 Single Heuristic Tuning

 Calder, et al.

 Stephenson, et al.

 Multiple Heuristic Tuning

 Cavazos, et al.

 MILEPOST GCC

Conclusions and Future Work
 2x average compile time decrease

 Future work

 Execution time improvement

 -O5 level

 Performance Counters for better method
description

 Other benefits

 Heuristic Context Infrastructure

 Bug Finding

Thank you

 Raul Silvera, Arie Tal, Greg Steffan, Mathew
Zaleski

 Questions?

