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Expanding Set of Manycore

Architectures

• Potential to deliver
most performance for
space and power for
HPC

• Server and PC
commodity
– Intel and AMD x86, Sun

UltraSparc

• Graphics Processors
& Gaming
– NVIDIA GTX280, STI

Cell

• Embedded
– Intel Atom, ARM (cell

phone, etc.)

Picochip DSP
1 GPP core
248 ASPs

Cisco CRS-1
188 Tensilica GPPs

Sun Niagara
8 GPP cores (32 threads)

Intel®

XScale

™
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Auto-tuning

• Problem: want to obtain and
compare best potential
performance of diverse
architectures, avoiding
– Non-portable code

– Labor-intensive user optimizations for
each specific architecture

• A Solution: Auto-tuning
– Automate search across a

complex optimization space

– Achieve performance far beyond
current compilers

– Achieve performance portability
for diverse architectures Reference

Best: 4x2

Mflop/s

Mflop/s

For finite element problem (BCSR) 

[Im, Yelick, Vuduc, 2005]



Maximizing

Memory Bandwidth

•Exploit NUMA

•Hide memory latency

•Satisfy Little’s Law

?memory

affinity ?SW

prefetch

?DMA

lists

?unit-stride

streams

?TLB

blocking

Optimization Categorization

Minimizing

Memory Traffic

Eliminate:

•Capacity misses

•Conflict misses

•Compulsory misses

•Write allocate behavior

?cache

blocking

?array

padding

?compress

data
?streaming

stores

Maximizing

In-core Performance

•Exploit in-core parallelism

   (ILP, DLP, etc…)

•Good (enough)

   floating-point balance

?unroll &

jam

?explicit

SIMD

?reorder

?eliminate

branches
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Each optimization has

a large parameter space

What are the optimal parameters?



Traversing the Parameter Space

Opt. #1 Parameters
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• Exhaustive search of these complex layered

optimizations is impossible

• To make problem tractable, we:

• order the optimizations

• applied them consecutively

• Every platform had its own set of best parameters



Multicore Architectures
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Multicore Architectures
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Multicore Architectures
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Stencil Code Overview

• For a given point, a stencil is a
fixed subset of nearest
neighbors

• A stencil code updates every
point in a regular grid by
“applying a stencil”

• Used in iterative PDE solvers like
Jacobi, Multigrid, and AMR

• Focus on a out-of-place 3D 27-
point stencil sweeping over a
2563 grid

– Problem size > Cache size

• Stencil codes characteristics

– Long unit-stride memory
accesses

– Some reuse of each grid point

– 30 flops per grid point

– Arithmetic Intensity 0.75-1.88
Adaptive Mesh Refinement (AMR)



Naïve Stencil Code

• We wish to exploit multicore resources

• Simple parallel stencil code:

– Use pthreads

– Parallelize in least contiguous grid dimension

– Thread affinity for scaling: multithreading, then multicore,

then multisocket

x

y

z (unit-stride)

2563 regular grid

Thread 0

Thread 1

Thread n

…



Naïve Performance

1.4

0.3

0.9 0.5

• Compiler delivers

poor performance

– icc for Intel

– gcc for VF

– xlc for BG/P

• No parallel scaling

for two architectures

• Low performance as

compared with

stream bandwidth

prediction

– Reasonably high

AI means that

other bottlenecks

likely exist



NUMA Optimization

20

! All DRAMs are highlighted in red

! Co-located data on same socket as

thread processing it



Array Padding Optimization

• Conflict misses may occur on low-associativity

caches

• Each array was padded by a tuned amount to

minimize conflicts

x

y

z (unit-stride)

2563 regular grid

Thread 0

Thread 1

Thread n

…

paddin
g



Performance

+ Array Padding

+ NUMA

Naive



Problem Decomposition

+Y

+Z

Decomposition of the Grid

into a Chunk of Core Blocks

+X

(unit stride)NY
N

Z

NX

• Large chunks enable

efficient NUMA Allocation

• Small chunks exploit LLC

shared caches

Decomposition into

Thread Blocks

CY

C
Z

CX

TYTX

• Exploit caches shared

among threads within a

core

Decomposition into

Register Blocks

RY

TY

C
Z

TX

RX
RZ

• Make DLP/ILP explicit

• Make register reuse

explicit

• This decomposition is universal across all examined architectures

• Decomposition does not change data structure

• Need to choose best block sizes for each hierarchy level



Performance

+ Thread Blocking

+ Register Blocking

+ Core Blocking

+ Array Padding

+ NUMA

Naive

1.4

0.3

0.9 0.5



ISA Specific Optimizations

• Software prefetch

• Explicit SIMD
– PPC SIMD loads do

not improve
performance due to
unaligned data

• Cache Bypass
– Initial values in write

array not used

– Eliminate write array
cache fills with
intrinsics

– Reduces memory
traffic from 24 B/point
to 16 B/point

Write

Array

DRAM

Read

ArrayChip

8 B/point read

8 B/point write

8 B/point read



Performance

+ Cache Bypass

+ SIMD

+ Thread Blocking

+ Software Prefetch

+ Register Blocking

+ Core Blocking

+ Array Padding

+ NUMA

Naive

• Optimizations effect

architectures in different

ways



Common Subexpression

Elimination Optimization

• Common computation exists between

different stencil updates

• Compiler does not recognize this

• Reduce number of flops from 30 to 18



CSE Version Performance

+ Cache Bypass

+ SIMD

+ Thread Blocking

+ Software Prefetch

+ Register Blocking

+ Core Blocking

+ Array Padding

+ NUMA

Naive

+ CSE



Is Performance Acceptable?

• A model (e.g. Roofline) could be used to

predict best performance

• Use a two-pass greedy algorithm



Second Pass Performance

+ Cache Bypass

+ SIMD

+ Thread Blocking

+ Software Prefetch

+ Register Blocking

+ Core Blocking

+ Array Padding

+ NUMA

Naive

+ CSE

+ Second Pass



Tuning Speedup

3.6x 1.9x

2.9x1.8x

• Speedup at maximum

concurrency



Parallel Speedup

8.1x 2.7x

4.0x13.1x

• Speedup going from a single

core to maximum

concurrency

• All architectures now scale



Effect of compilers

• icc is consistently

better than gcc

• For single socket gcc +

register blocking has

equivalent performance

to icc

• Core blocking improves

icc performance, but

not gcc

– Inferior code

generation hides

memory bottleneck?



Performance Comparison

• Intel Nehalem best

in absolute

performance

• Normalize for low

power, BG/P

solution is much

more attractive



Conclusions

• Compiler alone achieves poor performance

– Low fraction possible performance

– Often no parallel scaling

• Autotuning is essential to achieving good

performance

– 1.8x-3.6x speedups across diverse architectures

– Automatic tuning is necessary for scalability

– Most optimization with the same code base

• Clovertown required SIMD (hampers productivity) for

best performance

• When power consumption is taken into account,

BG/P performs well
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