
Optimizing 27-point Stencil on

Multicore
Kaushik Datta, Samuel Williams, Vasily Volkov,

Jonathan Carter, Leonid Oliker, John Shalf, and

Katherine Yelick

CRD/NERSC, Berkeley Lab

EECS, University of California, Berkeley

JTCarter@lbl.gov

iWAPT 2009

October 1-2 2009

Expanding Set of Manycore

Architectures

• Potential to deliver
most performance for
space and power for
HPC

• Server and PC
commodity
– Intel and AMD x86, Sun

UltraSparc

• Graphics Processors
& Gaming
– NVIDIA GTX280, STI

Cell

• Embedded
– Intel Atom, ARM (cell

phone, etc.)

Picochip DSP
1 GPP core
248 ASPs

Cisco CRS-1
188 Tensilica GPPs

Sun Niagara
8 GPP cores (32 threads)

Intel®

XScale

™

 Core
32K IC

32K DC

MEv
2

10

MEv
2

11

MEv
2

12

MEv

2

15

MEv

2

14

MEv

2

13

Rbuf

64 @

128B

Tbuf

64 @

128B

Hash

48/64/1

28Scratc

h
16KB

QDR

SRAM

2

QDR

SRAM

1

RDRA

M
1

RDRA

M
3

RDRA

M
2

G

A
S

K

E

T

PCI

(64b)

66

MHz

IXP280IXP280

00 16b16b

16b16b

11

88

11

88

11

88

11

88

11

88

11

88

11

88

64b64b

S

P

I

4
o

r

C

S

I
X

Stripe

E/D Q E/D Q

QDR

SRAM

3
E/D Q
11

88

11

88

MEv
2

9

MEv

2

16

MEv
2

2

MEv
2

3

MEv
2

4

MEv

2
7

MEv

2
6

MEv

2
5

MEv
2

1

MEv

2
8

CSRs

-Fast_wr

-UART

-Timers

-GPIO

-
BootROM/S
lowPort

QDR

SRAM

4
E/D Q
11

88

11

88

Intel Network Processor
1 GPP Core

16 ASPs (128 threads)

STI Cell

8 ASPs, 1GPP

Auto-tuning

• Problem: want to obtain and
compare best potential
performance of diverse
architectures, avoiding
– Non-portable code

– Labor-intensive user optimizations for
each specific architecture

• A Solution: Auto-tuning
– Automate search across a

complex optimization space

– Achieve performance far beyond
current compilers

– Achieve performance portability
for diverse architectures Reference

Best: 4x2

Mflop/s

Mflop/s

For finite element problem (BCSR)

[Im, Yelick, Vuduc, 2005]

Maximizing

Memory Bandwidth

•Exploit NUMA

•Hide memory latency

•Satisfy Little’s Law

?memory

affinity ?SW

prefetch

?DMA

lists

?unit-stride

streams

?TLB

blocking

Optimization Categorization

Minimizing

Memory Traffic

Eliminate:

•Capacity misses

•Conflict misses

•Compulsory misses

•Write allocate behavior

?cache

blocking

?array

padding

?compress

data
?streaming

stores

Maximizing

In-core Performance

•Exploit in-core parallelism

 (ILP, DLP, etc…)

•Good (enough)

 floating-point balance

?unroll &

jam

?explicit

SIMD

?reorder

?eliminate

branches

Optimization Categorization

Maximizing

In-core Performance

Minimizing

Memory Traffic

•Exploit in-core parallelism

 (ILP, DLP, etc…)

•Good (enough)

 floating-point balance

?unroll &

jam

?explicit

SIMD

?reorder

?eliminate

branches

Eliminate:

•Capacity misses

•Conflict misses

•Compulsory misses

•Write allocate behavior

?cache

blocking

?array

padding

?compress

data
?streaming

stores

Maximizing

Memory Bandwidth

•Exploit NUMA

•Hide memory latency

•Satisfy Little’s Law

?memory

affinity ?SW

prefetch

?DMA

lists

?unit-stride

streams

?TLB

blocking

Optimization Categorization

Maximizing

In-core Performance

Maximizing

Memory Bandwidth

•Exploit in-core parallelism

 (ILP, DLP, etc…)

•Good (enough)

 floating-point balance

?unroll &

jam

?explicit

SIMD

?reorder

?eliminate

branches

•Exploit NUMA

•Hide memory latency

•Satisfy Little’s Law

?memory

affinity ?SW

prefetch

?DMA

lists

?unit-stride

streams

?TLB

blocking

Minimizing

Memory Traffic

Eliminate:

•Capacity misses

•Conflict misses

•Compulsory misses

•Write allocate behavior

?cache

blocking

?array

padding

?compress

data
?streaming

stores

Optimization Categorization

Maximizing

In-core Performance

Minimizing

Memory Traffic

Maximizing

Memory Bandwidth

•Exploit in-core parallelism

 (ILP, DLP, etc…)

•Good (enough)

 floating-point balance

?unroll &

jam

?explicit

SIMD

?reorder

?eliminate

branches

•Exploit NUMA

•Hide memory latency

•Satisfy Little’s Law

?memory

affinity ?SW

prefetch

?DMA

lists

?unit-stride

streams

?TLB

blocking

Eliminate:

•Capacity misses

•Conflict misses

•Compulsory misses

•Write allocate behavior

?cache

blocking

?array

padding

?compress

data
?streaming

stores

Optimization Categorization

Maximizing

In-core Performance

Minimizing

Memory Traffic

Maximizing

Memory Bandwidth

•Exploit in-core parallelism

 (ILP, DLP, etc…)

•Good (enough)

 floating-point balance

?unroll &

jam

?explicit

SIMD

?reorder

?eliminate

branches

•Exploit NUMA

•Hide memory latency

•Satisfy Little’s Law

?memory

affinity ?SW

prefetch

?DMA

lists

?unit-stride

streams

?TLB

blocking

Eliminate:

•Capacity misses

•Conflict misses

•Compulsory misses

•Write allocate behavior

?cache

blocking

?array

padding

?compress

data
?streaming

stores

Each optimization has

a large parameter space

What are the optimal parameters?

Traversing the Parameter Space

Opt. #1 Parameters

O
p

t.
 #

2
 P

a
ra

m
e

te
rs

O
pt

. #
3

P
ar

am
et

er
s

• Exhaustive search of these complex layered

optimizations is impossible

• To make problem tractable, we:

• order the optimizations

• applied them consecutively

• Every platform had its own set of best parameters

Multicore Architectures

Intel Nehalem (Gainestown) Intel Clovertown

Sun Niagara2 (Victoria Falls) 10

667MHz FBDIMMs

Chipset (4x64b controllers)

10.66 GB/s(write)21.33 GB/s(read)

10.66 GB/s

Core

FSB

Core Core Core

10.66 GB/s

Core

FSB

Core Core Core

4MB

shared L2

4MB

shared L2
4MB

shared L2

4MB

shared L2

Core Core

8MB

shared L2

Core Core

425MHz DDR2

Chipset (2x128b controllers)

6.8 GB/s

IBM PPC 450

(BG/P)

Multicore Architectures

Intel Nehalem (Gainestown) Intel Clovertown

Sun Niagara2 (Victoria Falls) 11

667MHz FBDIMMs

Chipset (4x64b controllers)

10.66 GB/s(write)21.33 GB/s(read)

10.66 GB/s

Core

FSB

Core Core Core

10.66 GB/s

Core

FSB

Core Core Core

4MB

shared L2

4MB

shared L2
4MB

shared L2

4MB

shared L2

Core Core

8MB

shared L2

Core Core

425MHz DDR2

Chipset (2x128b controllers)

6.8 GB/s

Chip

MultiThreaded

(CMT)

x86

Superscalar

x86

Superscalar/

CMT

PPC

Dual-issue

in-order
IBM PPC 450

(BG/P)

Multicore Architectures

Intel Nehalem (Gainestown) Intel Clovertown

Sun Niagara2 (Victoria Falls) 12

667MHz FBDIMMs

Chipset (4x64b controllers)

10.66 GB/s(write)21.33 GB/s(read)

10.66 GB/s

Core

FSB

Core Core Core

10.66 GB/s

Core

FSB

Core Core Core

4MB

shared L2

4MB

shared L2
4MB

shared L2

4MB

shared L2

Core Core

8MB

shared L2

Core Core

425MHz DDR2

Chipset (2x128b controllers)

6.8 GB/s

1 socket x

4 cores/socket x

1 thread/core

2 sockets x

8 cores/socket x

8 threads/core

2 sockets x

4 cores/socket x

1 thread/core

2 sockets x

4 cores/socket x

2 threads/core

IBM PPC 450

(BG/P)

Multicore Architectures

Intel Nehalem (Gainestown) Intel Clovertown

Sun Niagara2 (Victoria Falls) 13

667MHz FBDIMMs

Chipset (4x64b controllers)

10.66 GB/s(write)21.33 GB/s(read)

10.66 GB/s

Core

FSB

Core Core Core

10.66 GB/s

Core

FSB

Core Core Core

4MB

shared L2

4MB

shared L2
4MB

shared L2

4MB

shared L2

Core Core

8MB

shared L2

Core Core

425MHz DDR2

Chipset (2x128b controllers)

6.8 GB/s

34 GB/s 7 GB/s

23 GB/s 12 GB/s

IBM PPC 450

(BG/P)

Multicore Architectures

Intel Nehalem (Gainestown) Intel Clovertown

Sun Niagara2 (Victoria Falls) 14

667MHz FBDIMMs

Chipset (4x64b controllers)

10.66 GB/s(write)21.33 GB/s(read)

10.66 GB/s

Core

FSB

Core Core Core

10.66 GB/s

Core

FSB

Core Core Core

4MB

shared L2

4MB

shared L2
4MB

shared L2

4MB

shared L2

Core Core

8MB

shared L2

Core Core

425MHz DDR2

Chipset (2x128b controllers)

6.8 GB/s

85 Gflop/s

14 Gflop/s

85 Gflop/s

19 Gflop/s

IBM PPC 450

(BG/P)

Multicore Architectures

Intel Nehalem (Gainestown) Intel Clovertown

Sun Niagara2 (Victoria Falls) 15

667MHz FBDIMMs

Chipset (4x64b controllers)

10.66 GB/s(write)21.33 GB/s(read)

10.66 GB/s

Core

FSB

Core Core Core

10.66 GB/s

Core

FSB

Core Core Core

4MB

shared L2

4MB

shared L2
4MB

shared L2

4MB

shared L2

Core Core

8MB

shared L2

Core Core

425MHz DDR2

Chipset (2x128b controllers)

6.8 GB/s

530 W

31 W

375 W

610 W

IBM PPC 450

(BG/P)

Stencil Code Overview

• For a given point, a stencil is a
fixed subset of nearest
neighbors

• A stencil code updates every
point in a regular grid by
“applying a stencil”

• Used in iterative PDE solvers like
Jacobi, Multigrid, and AMR

• Focus on a out-of-place 3D 27-
point stencil sweeping over a
2563 grid

– Problem size > Cache size

• Stencil codes characteristics

– Long unit-stride memory
accesses

– Some reuse of each grid point

– 30 flops per grid point

– Arithmetic Intensity 0.75-1.88
Adaptive Mesh Refinement (AMR)

Naïve Stencil Code

• We wish to exploit multicore resources

• Simple parallel stencil code:

– Use pthreads

– Parallelize in least contiguous grid dimension

– Thread affinity for scaling: multithreading, then multicore,

then multisocket

x

y

z (unit-stride)

2563 regular grid

Thread 0

Thread 1

Thread n

…

Naïve Performance

1.4

0.3

0.9 0.5

• Compiler delivers

poor performance

– icc for Intel

– gcc for VF

– xlc for BG/P

• No parallel scaling

for two architectures

• Low performance as

compared with

stream bandwidth

prediction

– Reasonably high

AI means that

other bottlenecks

likely exist

NUMA Optimization

20

! All DRAMs are highlighted in red

! Co-located data on same socket as

thread processing it

Array Padding Optimization

• Conflict misses may occur on low-associativity

caches

• Each array was padded by a tuned amount to

minimize conflicts

x

y

z (unit-stride)

2563 regular grid

Thread 0

Thread 1

Thread n

…

paddin
g

Performance

+ Array Padding

+ NUMA

Naive

Problem Decomposition

+Y

+Z

Decomposition of the Grid

into a Chunk of Core Blocks

+X

(unit stride)NY
N

Z

NX

• Large chunks enable

efficient NUMA Allocation

• Small chunks exploit LLC

shared caches

Decomposition into

Thread Blocks

CY

C
Z

CX

TYTX

• Exploit caches shared

among threads within a

core

Decomposition into

Register Blocks

RY

TY

C
Z

TX

RX
RZ

• Make DLP/ILP explicit

• Make register reuse

explicit

• This decomposition is universal across all examined architectures

• Decomposition does not change data structure

• Need to choose best block sizes for each hierarchy level

Performance

+ Thread Blocking

+ Register Blocking

+ Core Blocking

+ Array Padding

+ NUMA

Naive

1.4

0.3

0.9 0.5

ISA Specific Optimizations

• Software prefetch

• Explicit SIMD
– PPC SIMD loads do

not improve
performance due to
unaligned data

• Cache Bypass
– Initial values in write

array not used

– Eliminate write array
cache fills with
intrinsics

– Reduces memory
traffic from 24 B/point
to 16 B/point

Write

Array

DRAM

Read

ArrayChip

8 B/point read

8 B/point write

8 B/point read

Performance

+ Cache Bypass

+ SIMD

+ Thread Blocking

+ Software Prefetch

+ Register Blocking

+ Core Blocking

+ Array Padding

+ NUMA

Naive

• Optimizations effect

architectures in different

ways

Common Subexpression

Elimination Optimization

• Common computation exists between

different stencil updates

• Compiler does not recognize this

• Reduce number of flops from 30 to 18

CSE Version Performance

+ Cache Bypass

+ SIMD

+ Thread Blocking

+ Software Prefetch

+ Register Blocking

+ Core Blocking

+ Array Padding

+ NUMA

Naive

+ CSE

Is Performance Acceptable?

• A model (e.g. Roofline) could be used to

predict best performance

• Use a two-pass greedy algorithm

Second Pass Performance

+ Cache Bypass

+ SIMD

+ Thread Blocking

+ Software Prefetch

+ Register Blocking

+ Core Blocking

+ Array Padding

+ NUMA

Naive

+ CSE

+ Second Pass

Tuning Speedup

3.6x 1.9x

2.9x1.8x

• Speedup at maximum

concurrency

Parallel Speedup

8.1x 2.7x

4.0x13.1x

• Speedup going from a single

core to maximum

concurrency

• All architectures now scale

Effect of compilers

• icc is consistently

better than gcc

• For single socket gcc +

register blocking has

equivalent performance

to icc

• Core blocking improves

icc performance, but

not gcc

– Inferior code

generation hides

memory bottleneck?

Performance Comparison

• Intel Nehalem best

in absolute

performance

• Normalize for low

power, BG/P

solution is much

more attractive

Conclusions

• Compiler alone achieves poor performance

– Low fraction possible performance

– Often no parallel scaling

• Autotuning is essential to achieving good

performance

– 1.8x-3.6x speedups across diverse architectures

– Automatic tuning is necessary for scalability

– Most optimization with the same code base

• Clovertown required SIMD (hampers productivity) for

best performance

• When power consumption is taken into account,

BG/P performs well

Acknowledgements

• UC Berkeley

– RADLab Cluster (Nehalem)

– PSI cluster(Clovertown)

• Sun Microsystems

– Niagara2 donations

• ASCR Office in the DOE Office of Science

– contract DE-AC02-05CH11231

