
Auto Tuning Method for
Deciding Block Size Parameters

in Dynamically Load-Balanced BLAS
*Yuta SAWA and Reiji SUDA
The University of Tokyo

*Now in Central Research Laboratory, Hitachi, Ltd.

iWAPT 2009 October 1-2

Background
Multi-Core CPUs

in personal computers

CPUs on personal computers

Year: 1995 2000 2005 2009

Fastest Intel CPU
(for PC)

Cores (thread)

How many dimensions of
matrix multiplications

can be solved in a second

Pentium Pentium 4 Pentium D Core i7

1 1 2 4(8)

GFLOPS 0.4 4 12.8 51.2

580 1250 1800 2900

About 5 times in the dimension, and about 125 times in FLOPS

Users’ paradigm shift about
usage of computers
� A decade ago, users ran applications sequentially, or the

performance of the application was decreased

� Today, users can run a few applications concurrently
without much overhead

CPU

CPU
Core Core

App1

App2

CPU

App1 App2
Application time

App1 App2

Running sequentially
Running concurrently
disturbing each other

or

time

time

BLAS
(Basic Linear Algebra Subprograms)

� BLAS are interfaces of multiplication routines of vectors
and matrices

� BLAS are basic routine in numerical calculations
� BLAS are called from many other libraries such as LAPACK

BLAS

LAPACK
PBLAS

ARPACK
ScalaPACK

DGEMM routine in BLAS

� DGEMM is the simplest double-precision matrix
multiplication written as follows:

� Computation complexity of DGEMM routine is O(mnk)
� This DGEMM routine is our target problem in this paper

C := αAB + βC

C A:＝ B C+ βα

k

k mm

n
n

BLAS on personal computers

� DGEMM routine have much parallelism
� In personal computers, the number of available CPU cores

changes depends on other applications

CPU
Core Core

App 1

App 2App 1

The number of physical cores
p = 2

Available cores for BLAS

1

2

0

2

Application

Two parameters about
the number of CPU cores

time

High-performance BLAS
implementations
� GotoBLAS is the fastest BLAS implementation in the world

today
� Users can set the number of threads

� ATLAS is BLAS implementation which use auto tuning
� ATLAS decides the number of threads automatically depending

on the problem size

CPU
Core Core Core Core

BLAS
sub task

BLAS
sub task

BLAS
sub taskGotoBLAS with NUM_THREAD=4

CPU
Core Core Core Core

BLAS

sub task

BLAS

sub task

BLAS

sub task

BLAS

sub task

CPU
Core Core Core Core

BLAS

sub task

ATLAS for small problems ATLAS for large problems

BLAS

sub task

BLAS
sub task

time

timetime

Importance of Dynamic Load
Balancing
� In traditional BLAS implementations, the size of each sub

task was almost the same

� If there are other tasks running concurrently, using
dynamic load balancing is better

CPU
Core Core

BLAS
sub task

Core Core

BLAS
sub task

BLAS
sub task

BLAS
sub task

Sub tasks with the same size

CPU
Core Core
BLAS

sub task

Core Core
BLAS

sub task

BLAS

sub task BLAS
sub task

App 1

CPU
Core Core
BLAS

sub task

Core Core
BLAS

sub task

BLAS

sub task sub task

App 1

Sub tasks with the same size Dynamic load balancing

time

time
time

Dynamically
Load-Balanced

BLAS (DL-BLAS)

What is DL-BLAS?

� DL-BLAS is one of BLAS implementations

� DL-BLAS is well parallelized even if there are other
applications running concurrently

App 1

Other Application

CPU
Core

BLAS
sub task

Core

BLAS

sub task

Core

BLAS

sub task

Core

BLAS
sub task

App 2

Time

DL-BLAS parallelization algorithm

0 1

2

Original
Calculation

Split into sub-tasks

Core 1

Core 2

Core n

DL-BLAS provides

� DL-BLAS split a calculation into some tasks, and assign
them to CPUs using dynamic load balancing

� Each CPU calculates tasks using BLAS implementation

Each core
calculates sub-tasks

10

2

・・・・

・・・・

Core 1

0

Calculate using ATLAS

Assign sub-tasks
to cores

・・・・

DL-BLAS overview

Static scheduling is inefficient
on personal computers

Tile matrices by sub-matrices
with block size and
use dynamic load balancing

We have to decide block size

We want efficient parameters
for every problem sizes?

Problem Our solution

STEP1

STEP2

STEP3

Use Diagonal Searching Algorithm
When the problem size are fixed

Use Reductive Searching Algorithm
and Parameter Selection Algorithm

DL-BLAS overview

Static scheduling is inefficient
on personal computers

Tile matrices by sub-matrices
with block size and
use dynamic load balancing

We have to decide block size

We want efficient parameters
for every problem sizes?

Problem Our solution

STEP1

STEP2

STEP3

Use Diagonal Searching Algorithm
When the problem size are fixed

Use Reductive Searching Algorithm
and Parameter Selection Algorithm

DL-BLAS task splitting

＋＝

kb

×

nb

C A＋＝ B
×

matrix partitioning

� DGEMM calculation can be written as
C = αAB + βC

� A is partitioned by (nb, kb) matrices, B is by (kb, nb) and C is
be (nb, nb)

nb kb
nb

nb

Block size: (nb, kb)

One task

n

m

n k

mk

Parameter Tuning
Algorithms in DL-BLAS

DL-BLAS overview

Static scheduling is inefficient
on personal computers

Tile matrices by sub-matrices
with block size and
use dynamic load balancing

We have to decide block size

We want efficient parameters
for every problem sizes?

Problem Our solution

STEP1

STEP2

STEP3

Use Diagonal Searching Algorithm
When the problem size are fixed

Use Reductive Searching Algorithm
and Parameter Selection Algorithm

DL-BLAS performance modeling

� DL-BLAS performance =
single-thread performance× multi-thread speed-up

� We modeled the lower bound of multi-thread speed-up
� We created an algorithm to find quasi-maximum value of

single-thread performance

CPU
Core Core Core Core If there are 3 available CPU cores and

4 sub tasks, they need 2 unit time.
The speed-up rate is 4 / 2 = 2
Parallel efficiency: 2 / 3 = 0.667

If there are 3 available CPU cores and
10 sub tasks, they need 4 unit time.
the speed-up rate is 10 / 4 = 2.5
Parallel efficiency: 2.5 / 3 = 0.833

Multi-thread speed-up and
the number of sub tasks

CPU
Core Core Core Core

Execution time

If there are only small number of tasks, the speed-up rate can be small

Example 1: sub-tasks are large

Example 2: sub-tasks are small

App 1

App 1

Trade-off between multi-thread speedup
and single-thread performance

� Generally there are following trends
� Larger block size provides higher single-thread calculation

performance
� Larger block size make the number of tasks smaller, and then

load balance mechanism do not work well

Single-Thread performance
Multi-Thread speed-up rate

Large block size and

Small number of sub tasks
Small block size and

Large number of sub tasks

� We denote parameters, p and i

� Letting the number of sub tasks be s, we define the speed-
up rate h(i, s) and h’(i, s) as follows

Multi-Thread speed-up rate (1/2)

CPU
Core Core Core Core

App 1

App 1
App2

App3

p: The number of physical cores
(NOT be changed in a machine)

time

p i

4

4

4

4

4

3

4

1

2

3

i: available CPU cores
(may be changed by other
applications)

==),('),(siihsih
GFLOPS value of single-thread calculation

GFLOPS value of multi-threads (using i cores) calculation

Clearly, i ≦ p

s

h’(i, s)

==),('),(siihsih
GFLOPS value of single-thread calculation

GFLOPS value of multi-threads (using i cores) calculation

1 5 10 16

Can we find the lower bound of
these graphs?

i = 2

i = 3

i = 4

Multi-Thread speed-up rate (2/2)

� We proved following theorem

Theorem about speed-up rate

−+
−−≥

1

1
1),('

pt

p
sih

p: number of physical CPU cores
s: number of tasks
i: number of CPU cores which
can be used on that time

h’(i, s)

s
t

−+
−−=

1

1
1)(

ps

p
sf

1.0

0

For every 1 < i ≦ p, t ≦ s

� Case: p = 4

Example of speed-up rate

−+
−−≥

1

1
1),('

pt

p
sih

p: number of physical CPU cores
s: number of tasks
i: number of CPU cores which
can be used on that time
1 < i≦ p, t≦ s

s

−+
−−=

1

1
1)(

ps

p
sf

5 10 15 20

0.625

0.769
0.833

0.870
0.85

17

We created more than or equal to
17 tasks
(We considered 85% is well parallelized)

In the evaluations, we used machines which have
4 physical CPU cores or 4 CPU threads

DL-BLAS overview

Static scheduling is inefficient
on personal computers

Tile matrices by sub-matrices
with block size and
use dynamic load balancing

We have to decide block size

We want efficient parameters
for every problem sizes?

Problem Our solution

STEP1

STEP2

STEP3

Use Diagonal Searching Algorithm
When the problem size are fixed

Use Reductive Searching Algorithm
and Parameter Selection Algorithm

Searching space of block size

� Basic idea is follows
Single-Thread performanceMulti-Thread speed-up rate

Large block size and
Small number of tasks

Small block size and

Large number of tasks
17 tasks

Well parallelized area

smaxsminBlock size

Search parameters in this range

Not so be different

≒ 0.6 smax

⇒ How to search?

Relation between block sizes and
single-thread performance
� Exhaustive search results of calculating 1000 by 1000

square matrix multiplication on Q6600 (Intel Core 2 Quad)

Large block size and

Small number of tasks

Small block size and
Large number of tasks

TrendActual

Highest performance block size

single-thread performance

＋＝

kb

×

nb

nb kb

Diagonal Searching Algorithm

n
b

k
b

� Evaluating all parameters smin≦ nb, kb≦ smax need much
time to calculate

� Diagonal Searching Algorithm decrease the calculation complexity

j

j

Algorithm
1. Evaluate all paramters smin≦ nb = kb≦ smax ,

the highest performance block size be j

2. Search parameters in nb = j or kb = j

3. Choose the highest performance block size
found in STEP 1 and STEP 2

This algorithm returned the parameters which gave us
the highest performance on many architectures

(Intel Core 2 Extreme, Intel Core i7, AMD Phenom, AMD Phenom II)

DL-BLAS overview

Static scheduling is inefficient
on personal computers

Tile matrices by sub-matrices
with block size and
use dynamic load balancing

We have to decide block size

We want efficient parameters
for every problem sizes?

Problem Our solution

STEP1

STEP2

STEP3

Use Diagonal Searching Algorithm
When the problem size are fixed

Use Reductive Searching Algorithm
and Parameter Selection Algorithm

Relation between block size and
problem size
� Multi-Thread speed-up rate is changed when the problem

size is changed
Single-Thread performance

Multi-Thread speed-up rate

for a larger problem

Large block size and

Small number of tasks

Small block size and

Large number of tasks

Well parallelized area

for a larger problem

Well parallelized area

for a smaller problem

Multi-Thread speed-up rate

for a smaller problem

Reductive Searching Algorithm

n
b

k
b

� We want to get multiple [nb, kb] pairs

2. In the range [smin, smax], run Diagonal
Searching Algorithm, and let the results of
the solution be [na, ka]

Algorithm:

1. Initialize smin and smax be [150, 250], and a = 1

4. let [smin, smax] = [0.5 na, 0.9 na] and
add [na, ka] to result-list

5. a := a + 1 and Go to STEP 2

Result-list

3. If single-thread calculation is faster than multi-
thread calculation, then last the algorithm

n
b

k
b

250150

250

150

n1

k1

n1

k1

n2

k2

n2

k2

Large paramter Small parameter

Parameter Selection

For each problem, we select one pair of the parameters (na, ka)
from the result-list using following algorithm

Result-list n
b

k
b

n1

k1

n2

k2

n3

k4

・・・

Algorithm

C A＝ Bα

k

k mm

n
n

Large paramter Small parameter

For i = 1 to length(Result-list)
num-tasks =
if num-tasks > 16

return (ni, ki);
end
return 0 // single-thread calculation

End for

 ii nmnn // Select largest pair of parameters
which make more than
16 tasks

Algorithms’ work-flow

Installation time

Calculation time

Prepare hardware and BLAS routine

Tune DL-BLAS using

Diagonal Searghing Algorithm and Reductive Searching Algorithm

Result-list
n
b

k
b

n1

k1

n2

k2

n3

k4
・・・・・

Store result-list on the disc

When DL-BLAS routines are called, get result-list from the disc

Using Parameter Selection Algorithm, decide the block size
and calculate

Performance
Evaluation Results

Algorithms’ work-flow

Installation time

Calculation time

Prepare hardware and BLAS routine

Tune DL-BLAS using

Diagonal Searghing Algorithm and Reductive Searching Algorithm

Result-list
n
b

k
b

n1

k1

n2

k2

n3

k4
・・・・・

Store result-list on the disc

When DL-BLAS routines are called, get result-list from the disc

Using Parameter Selection Algorithm, decide the block size
and calculate

Hardware and Problems

� We used some CPU models
� Intel Core 2 Extreme, QX9650
� Intel Core i7 965
� Intel ATOM 330
� AMD Phenom 9600
� AMD Phenom II X4 940

� As first, we evaluate Diagonal Searching Algorithm
using 1000 by 1000 square matrix multiplications

Results of Diagonal Searching
Algorithm

n
b

k
b

150

150

250

250 37.5G

FLOPS

25G

FLOPS

Intel Core 2 Extreme (QX9650)

n
b

k
b

150 250

1.5G

FLOPS

1.7G

FLOPS150

250

Intel ATOM 330

Results of Diagonal Searching Algorithm
= Highest performance parameters

Results of Diagonal Searching Algorithm

Highest performance parameters
1.70 GFLOPS

1.69 GFLOPS

Results of Diagonal Searching
Algorithm

n
b

k
b

150

150

250

250 35G

FLOPS

25G

FLOPS

n
b

k
b

150

150

250

250

25G

FLOPS

37G

FLOPS

Intel Core i7 965 with hyper-threading Intel Core i7 965 without hyper-threading

Results of Diagonal Searching Algorithm
= Highest performance parameters

Results of Diagonal Searching Algorithm
= Highest performance parameters

Results of Diagonal Searching
Algorithm

n
b

k
b

150

150

250

250

10G

FLOPS

17.5G

FLOPS

n
b

k
b

150

150

250

250

25G

FLOPS

35G

FLOPS

AMD Phenom 9600 AMD Phenom II X4 940

Results of Diagonal Searching Algorithm
= Highest performance parameters

Results of Diagonal Searching Algorithm
= Highest performance parameters

Results of
Reductive Searching Algorithm

Intel Core 2 Extreme (QX9650)

n
b

k
b

0

0

250

250

Result-list is shown in right

This calculation need less than
half an hour

(224, 168)
(168, 168)

(112, 98)

(56,56)
(48,50)

(24,24)

(16,20)
(12,13)

Results of
Parameter Selection Algorithm

n
b

k
b

0

0

250

250

(224, 168)
(168, 168)

(112, 98)

(56,56)
(48,50)

(24,24)

(16,20)
(12,13)

(48, 50)193～224

(224, 168)893～
(168, 168)673～892
(112, 98)449～672
(56, 56)225～448

(24, 24)97～192
(16, 20)65～96
(12,13)49～64
Single Thread～48

Used parameter
(nb, kb)

Dimension of
square matrix

Intel Core 2 Extreme (QX9650)

In square matrix multiplication,
following parameters are used

Results of
Reductive Searching Algorithm

AMD Phenom II X4 940

n
b

k
b

0

0

250

250

Result-list is shown in right

(206, 200)

(172, 120)(132, 120)

(104, 80)

(92, 80)

(64, 40)

(56, 56)

(41, 40)

This calculation need less than
half an hour

Results of
Parameter Selection Algorithm

(172, 120)685～892
(206, 200)825～

(132, 120)529～684
(104, 80)417～528
(92, 80)369～416
(64, 40)257～368
(56, 56)225～256
(41, 40)165～224
Single Thread～164

Used parameter
(nb, kb)

Dimension of
square matrix

AMD Phenom II X4 940

In square matrix multiplication,
following parameters are used

n
b

k
b

0

0

250

250

(206, 200)

(172, 120)(132, 120)

(104, 80)

(92, 80)

(64, 40)

(56, 56)

(41, 40)

Evaluation Machines

� We solved square matrix multiplication problem with the
following hardware and software

� CPU models
� Intel Core 2 Extreme QX9650
� Intel Core i7 965
� Intel ATOM 330
� AMD Phenom 9600
� AMD Phenom II X4 940

� BLAS implementations
� DL-BLAS
� ATLAS
� GotoBLAS (version 1.26)

Evaluation Circumstances

� We make following three circumstances
� No other tasks are running (no-task case)

� Busy loop program is running concurrently (busy-loop case)

� Inner product (dot product) program is running concurrently
(inner-product case)

CPU

DL-BLAS calculation

CPU

DL-BLAS calculation

CPU

DL-BLAS calculation

Busy-loop

Inner product

while(true){

}

while(true){
double ip = 0;

for i=1 to n

ip += a[i] + b[i]
}

memory

access

DGEMM calculation on QX9650
(Intel Core 2 Extreme)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

� GotoBLAS is fastest in no-task case, but slowest in
busy-loop case and inner-product case

� DL-BLAS is faster than ATLAS in all cases
� DL-BLAS is fastest in busy-loop case and inner-product

case
GotoBLAS

ATLAS

DL-BLAS with ATLAS

no-task busy-loop inner-product

matrix size matrix size matrix size

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

0
2000

40

0
2000

40

0
2000

40

0
2000

DGEMM calculation on 965 (Intel
Core i7) hyper-threading
� GotoBLAS is not so fast on this architecture

� “Hyper-Thread is harmful” K.Goto said, developer of
GotoBLAS

� ATLAS is fastest in some cases
� Middle size of problems in

busy-loop and inner-product
case

GotoBLAS

ATLAS

DL-BLAS with ATLAS

no-task busy-loop inner-product

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000
 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000

matrix size matrix size matrix size

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

50

0
2000

50

0
2000

50

0 2000

50

0

High-performance BLAS
implementations
� GotoBLAS is the fastest BLAS implementation in the world

today
� Users can set the number of threads

� ATLAS is BLAS implementation which use auto tuning
� ATLAS decides the number of threads automatically depending

on the problem size

CPU
Core Core Core Core

BLAS
sub task

BLAS
sub task

BLAS
sub taskGotoBLAS with NUM_THREAD=4

CPU
Core Core Core Core

BLAS

sub task

BLAS

sub task

BLAS

sub task

BLAS

sub task

CPU
Core Core Core Core

BLAS

sub task

ATLAS for small problems ATLAS for large problems

BLAS

sub task

BLAS
sub task

DGEMM calculation on 965 (Intel
Core i7) without hyper-threading
� GotoBLAS is fastest in no-task case
� In other cases, the performance of GotoBLAS is

unstable
� Other tasks disturb GotoBLAS

GotoBLAS

ATLAS

DL-BLAS with ATLAS

no-task busy-loop inner-product

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

matrix size matrix size matrix size

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)
2000

50

0
2000

50

02000

50

0

DGEMM calculation on Intel
ATOM 330 with hyper-threading
� DL-BLAS is faster in busy-loop case and inner-

product case
� The performance of DL-BLAS is not faster than ATLAS

in no-task case
� It is considered that DL-BLAS is disturbed by hyper-threading

ATLAS

DL-BLAS with ATLAS

no-task busy-loop inner-product

matrix size matrix size matrix size

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)
1000

2

0
1000

2

01000

2

0
 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000
 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000
 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

DGEMM calculation on AMD
Phenom 9600
� GotoBLAS is fastest in no-task case
� DL-BLAS is the fastest for small problems in busy-loop

case and inner-product case
� For large problems, the performances are not so different

GotoBLAS

ATLAS

DL-BLAS with ATLAS

no-task busy-loop inner-product

matrix size matrix size matrix size

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)
2000

35

0
2000

35

02000

35

0
 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000

DGEMM calculation on X4 940
(AMD Phenom II)

GotoBLAS

ATLAS

DL-BLAS with ATLAS

no-task busy-loop inner-product

matrix size matrix size matrix size

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

� GotoBLAS is a little faster than ATLAS and DL-BLAS in
no-task case

� The performance of DL-BLAS is similar to that of
ATLAS

Conclusion

� We implemented a BLAS implementation, which use
dynamic load balancing

� We call the implementation DL-BLAS

� Our implementations need auto tuning technique to get
block size parameters

� We call the techniques Diagonal Searching Algorithm,
Reductive Searching Algorithm, and Parameter Selection

� In some cases, performance of DL-BLAS was better
than ATLAS and GotoBLAS

� The performance of DL-BLAS is constantly not so wrong

