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Background
Multi-Core CPUs

in personal computers



CPUs on personal computers

Year: 1995 2000 2005 2009

Fastest Intel CPU
(for PC)

Cores (thread)

How many dimensions of
matrix multiplications

can be solved in a second

Pentium Pentium 4 Pentium D Core i7

1 1 2 4(8)

GFLOPS 0.4 4 12.8 51.2

580 1250 1800 2900

About 5 times in the dimension, and about 125 times in FLOPS



Users’ paradigm shift about 
usage of computers
� A decade ago, users ran applications sequentially, or the 

performance of the application was decreased

� Today, users can run a few applications concurrently 
without much overhead

CPU

CPU
Core Core

App1

App2

CPU

App1 App2
Application time

App1 App2

Running sequentially
Running concurrently
disturbing each other

or

time

time



BLAS 
(Basic Linear Algebra Subprograms)

� BLAS are interfaces of multiplication routines of vectors 
and matrices

� BLAS are basic routine in numerical calculations
� BLAS are called from many other libraries such as LAPACK

BLAS

LAPACK
PBLAS

ARPACK
ScalaPACK



DGEMM routine in BLAS

� DGEMM is the simplest double-precision matrix 
multiplication written as follows:

� Computation complexity of DGEMM routine is O(mnk) 
� This DGEMM routine is our target problem in this paper

C := αAB + βC

C A:＝ B C+ βα

k

k mm

n
n



BLAS on personal computers

� DGEMM routine have much parallelism
� In personal computers, the number of available CPU cores 

changes depends on other applications

CPU
Core Core

App 1

App 2App 1

The number of physical cores
p = 2

Available cores for BLAS

1

2

0

2

Application

Two parameters about
the number of CPU cores

time



High-performance BLAS 
implementations
� GotoBLAS is the fastest BLAS implementation in the world 

today
� Users can set the number of threads

� ATLAS is BLAS implementation which use auto tuning
� ATLAS decides the number of threads automatically depending 

on the problem size

CPU
Core Core Core Core

BLAS
sub task

BLAS
sub task

BLAS
sub taskGotoBLAS with NUM_THREAD=4
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Core Core Core Core
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sub task

BLAS

sub task

BLAS

sub task

BLAS

sub task

CPU
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BLAS

sub task

ATLAS for small problems ATLAS for large problems

BLAS

sub task

BLAS
sub task

time

timetime



Importance of Dynamic Load 
Balancing
� In traditional BLAS implementations, the size of each sub 

task was almost the same

� If there are other tasks running concurrently, using 
dynamic load balancing is better
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Dynamically 
Load-Balanced 

BLAS (DL-BLAS)



What is DL-BLAS?

� DL-BLAS is one of BLAS implementations

� DL-BLAS is well parallelized even if there are other 
applications running concurrently

App 1

Other Application

CPU
Core

BLAS
sub task

Core

BLAS

sub task

Core

BLAS

sub task

Core

BLAS
sub task

App 2

Time



DL-BLAS parallelization algorithm

0 1

2

Original
Calculation

Split into sub-tasks

Core 1

Core 2

Core n

DL-BLAS provides

� DL-BLAS split a calculation into some tasks, and assign 
them to CPUs using dynamic load balancing

� Each CPU calculates tasks using BLAS implementation

Each core
calculates sub-tasks

10

2

・・・・

・・・・

Core 1

0

Calculate using ATLAS

Assign sub-tasks
to cores

・・・・



DL-BLAS overview

Static scheduling is inefficient
on personal computers

Tile matrices by sub-matrices
with block size and
use dynamic load balancing

We have to decide block size

We want efficient parameters
for every problem sizes?

Problem Our solution

STEP1

STEP2

STEP3

Use Diagonal Searching Algorithm
When the problem size are fixed

Use  Reductive Searching Algorithm 
and Parameter Selection Algorithm
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DL-BLAS task splitting 

＋＝

kb

×

nb

C A＋＝ B
×

matrix partitioning

� DGEMM calculation can be written as
C = αAB + βC

� A is partitioned by (nb, kb) matrices, B is by (kb, nb) and C is 
be (nb, nb) 

nb kb
nb

nb

Block size: (nb, kb)

One task

n

m

n k

mk



Parameter Tuning
Algorithms in DL-BLAS
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DL-BLAS performance modeling

� DL-BLAS performance = 
single-thread performance× multi-thread speed-up

� We modeled the lower bound of multi-thread speed-up
� We created an algorithm to find quasi-maximum value of 

single-thread performance



CPU
Core Core Core Core If there are 3 available CPU cores and

4 sub tasks, they need 2 unit time.
The speed-up rate is 4 / 2 = 2
Parallel efficiency:  2 / 3 = 0.667

If there are 3 available CPU cores and
10 sub tasks, they need 4 unit time.
the speed-up rate is 10 / 4 = 2.5
Parallel efficiency: 2.5 / 3 = 0.833

Multi-thread speed-up and
the number of sub tasks

CPU
Core Core Core Core

Execution time

If there are only small number of tasks, the speed-up rate can be small

Example 1: sub-tasks are large

Example 2: sub-tasks are small

App 1

App 1



Trade-off between multi-thread speedup 
and single-thread performance

� Generally there are following trends
� Larger block size provides higher single-thread calculation 

performance
� Larger block size make the number of tasks smaller, and then 

load balance mechanism do not work well

Single-Thread performance
Multi-Thread speed-up rate

Large block size and

Small number of sub tasks
Small block size and

Large number of sub tasks



� We denote parameters, p and i

� Letting the number of sub tasks be s, we define the speed-
up rate h(i, s) and h’(i, s) as follows

Multi-Thread speed-up rate (1/2)
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Core Core Core Core

App 1

App 1
App2

App3

p: The number of physical cores
(NOT be changed in a machine)

time

p i
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i: available CPU cores
(may be changed by other 
applications)

== ),('),( siihsih
GFLOPS value of single-thread calculation

GFLOPS value of multi-threads (using i cores) calculation

Clearly, i ≦ p



s

h’(i, s)

== ),('),( siihsih
GFLOPS value of single-thread calculation

GFLOPS value of multi-threads (using i cores) calculation

1 5 10 16

Can we find the lower bound of
these graphs?

i = 2

i = 3

i = 4

Multi-Thread speed-up rate (2/2)



� We proved following theorem

Theorem about speed-up rate
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� Case:  p = 4

Example of speed-up rate
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0.625

0.769
0.833

0.870
0.85

17

We created more than or equal to
17 tasks
(We considered 85% is well parallelized)

In the evaluations, we used machines which have
4 physical CPU cores or 4 CPU threads
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Searching space of block size

� Basic idea is follows
Single-Thread performanceMulti-Thread speed-up rate

Large block size and
Small number of tasks

Small block size and

Large number of tasks
17 tasks

Well parallelized area

smaxsminBlock size

Search parameters in this range

Not so be different

≒ 0.6 smax

⇒ How to search?



Relation between block sizes and 
single-thread performance 
� Exhaustive search results of calculating 1000 by 1000 

square matrix multiplication on Q6600 (Intel Core 2 Quad)

Large block size and

Small number of tasks

Small block size and
Large number of tasks

TrendActual

Highest performance block size

single-thread performance

＋＝

kb

×

nb

nb kb



Diagonal Searching Algorithm

n
b

k
b

� Evaluating all parameters smin≦ nb, kb≦ smax need much 
time to calculate

� Diagonal Searching Algorithm decrease the calculation complexity

j

j

Algorithm
1. Evaluate all paramters smin≦ nb = kb≦ smax ,

the highest performance block size be j

2. Search parameters in nb = j or kb = j

3. Choose the highest performance block size
found in STEP 1 and STEP 2

This algorithm returned the parameters which gave us
the highest performance on many architectures

(Intel Core 2 Extreme, Intel Core i7, AMD Phenom, AMD Phenom II)
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Relation between block size and 
problem size
� Multi-Thread speed-up rate is changed when the problem 

size is changed
Single-Thread performance

Multi-Thread speed-up rate

for a larger problem

Large block size and

Small number of tasks

Small block size and

Large number of tasks

Well parallelized area

for a larger problem

Well parallelized area

for a smaller problem

Multi-Thread speed-up rate

for a smaller problem



Reductive Searching Algorithm

n
b

k
b

� We want to get multiple [nb, kb] pairs 

2. In the range [smin, smax], run Diagonal 
Searching Algorithm, and let the results of 
the solution be [na, ka]

Algorithm:

1. Initialize smin and smax be [150, 250], and a = 1

4. let [smin, smax] = [0.5 na, 0.9 na] and
add [na, ka] to result-list

5. a := a + 1 and Go to STEP 2

Result-list

3. If single-thread calculation is faster than multi-
thread calculation, then last the algorithm

n
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k
b

250150

250

150

n1

k1

n1

k1

n2

k2

n2

k2

Large paramter Small parameter



Parameter Selection

For each problem, we select one pair of the parameters (na, ka) 
from the result-list using following algorithm

Result-list n
b

k
b

n1

k1

n2

k2

n3

k4

・・・

Algorithm

C A＝ Bα

k

k mm

n
n

Large paramter Small parameter

For i = 1 to length(Result-list)
num-tasks = 
if num-tasks > 16

return (ni, ki);
end
return 0 // single-thread calculation

End for

  ii nmnn // Select largest pair of parameters
which make more than 
16 tasks 



Algorithms’ work-flow

Installation time

Calculation time

Prepare hardware and BLAS routine

Tune DL-BLAS using

Diagonal Searghing Algorithm and Reductive Searching Algorithm

Result-list
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k4
・・・・・

Store result-list on the disc

When DL-BLAS routines are called, get result-list from the disc

Using Parameter Selection Algorithm, decide the block size
and calculate



Performance 
Evaluation Results
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Hardware and Problems

� We used some CPU models
� Intel Core 2 Extreme, QX9650
� Intel Core i7 965
� Intel ATOM 330
� AMD Phenom 9600
� AMD Phenom II X4 940

� As first, we evaluate Diagonal Searching Algorithm 
using 1000 by 1000 square matrix multiplications



Results of Diagonal Searching 
Algorithm
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Results of Diagonal Searching Algorithm
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Results of Diagonal Searching 
Algorithm
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Results of
Reductive Searching Algorithm

Intel Core 2 Extreme (QX9650)

n
b

k
b

0

0

250

250

Result-list is shown in right

This calculation need less than
half an hour

(224, 168)
(168, 168)

(112, 98)

(56,56)
(48,50)

(24,24)

(16,20)
(12,13)



Results of
Parameter Selection Algorithm
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(224, 168)893～
(168, 168)673～892
(112, 98)449～672
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(24, 24)97～192
(16, 20)65～96
(12,13)49～64
Single Thread～48

Used parameter 
(nb, kb)

Dimension of 
square matrix

Intel Core 2 Extreme (QX9650)

In square matrix multiplication,
following parameters are used



Results of
Reductive Searching Algorithm

AMD Phenom II X4 940
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Result-list is shown in right

(206, 200)

(172, 120)(132, 120)

(104, 80)

(92, 80)

(64, 40)

(56, 56)

(41, 40)

This calculation need less than
half an hour



Results of
Parameter Selection Algorithm

(172, 120)685～892
(206, 200)825～

(132, 120)529～684
(104, 80)417～528
(92, 80)369～416
(64, 40)257～368
(56, 56)225～256
(41, 40)165～224
Single Thread～164

Used parameter 
(nb, kb)

Dimension of 
square matrix

AMD Phenom II X4 940

In square matrix multiplication,
following parameters are used
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Evaluation Machines

� We solved square matrix multiplication problem with the 
following hardware and software

� CPU models
� Intel Core 2 Extreme QX9650
� Intel Core i7 965
� Intel ATOM 330
� AMD Phenom 9600
� AMD Phenom II X4 940

� BLAS implementations
� DL-BLAS
� ATLAS
� GotoBLAS (version 1.26)



Evaluation Circumstances

� We make following three circumstances
� No other tasks are running (no-task case)

� Busy loop program is running concurrently (busy-loop case)

� Inner product (dot product) program is running concurrently 
(inner-product case)

CPU

DL-BLAS calculation

CPU

DL-BLAS calculation

CPU

DL-BLAS calculation

Busy-loop

Inner product

while(true){

}

while(true){
double ip = 0;

for i=1 to n

ip += a[i] + b[i]
}

memory

access



DGEMM calculation on QX9650
(Intel Core 2 Extreme)
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� GotoBLAS is fastest in no-task case, but slowest in 
busy-loop case and inner-product case 

� DL-BLAS is faster than ATLAS in all cases
� DL-BLAS is fastest in busy-loop case and inner-product
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DGEMM calculation on 965 (Intel 
Core i7) hyper-threading 
� GotoBLAS is not so fast on this architecture

� “Hyper-Thread is harmful” K.Goto said, developer of 
GotoBLAS

� ATLAS is fastest in some cases
� Middle size of problems in 

busy-loop and inner-product
case

GotoBLAS

ATLAS

DL-BLAS with ATLAS

no-task busy-loop inner-product
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High-performance BLAS 
implementations
� GotoBLAS is the fastest BLAS implementation in the world 

today
� Users can set the number of threads

� ATLAS is BLAS implementation which use auto tuning
� ATLAS decides the number of threads automatically depending 

on the problem size
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Core Core Core Core
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sub task
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sub task
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sub taskGotoBLAS with NUM_THREAD=4
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sub task

ATLAS for small problems ATLAS for large problems
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sub task

BLAS
sub task



DGEMM calculation on 965 (Intel 
Core i7) without hyper-threading 
� GotoBLAS is fastest in no-task case
� In other cases, the performance of GotoBLAS is 

unstable
� Other tasks disturb GotoBLAS

GotoBLAS

ATLAS

DL-BLAS with ATLAS

no-task busy-loop inner-product

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  200  400  600  800  1000  1200  1400  1600  1800  2000
 0

 10

 20

 30

 40

 50

 0  200  400  600  800  1000  1200  1400  1600  1800  2000
 0

 10

 20

 30

 40

 50

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

matrix size matrix size matrix size

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)

pe
rf

or
m

an
ce

 (
G

F
LO

P
S

)
2000

50

0
2000

50

02000

50

0



DGEMM calculation on Intel 
ATOM 330 with hyper-threading 
� DL-BLAS is faster in busy-loop case and inner-

product case
� The performance of DL-BLAS is not faster than ATLAS 

in no-task case
� It is considered that DL-BLAS is disturbed by hyper-threading
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DGEMM calculation on AMD 
Phenom 9600 
� GotoBLAS is fastest in no-task case
� DL-BLAS is the fastest for small problems in busy-loop

case and inner-product case
� For large problems, the performances are not so different
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DGEMM calculation on X4 940 
(AMD Phenom II) 

GotoBLAS

ATLAS

DL-BLAS with ATLAS

no-task busy-loop inner-product
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� GotoBLAS is a little faster than ATLAS and DL-BLAS in 
no-task case

� The performance of DL-BLAS is similar to that of 
ATLAS



Conclusion

� We implemented a BLAS implementation, which use 
dynamic load balancing

� We call the implementation DL-BLAS

� Our implementations need auto tuning technique to get 
block size parameters

� We call the techniques Diagonal Searching Algorithm, 
Reductive Searching Algorithm, and Parameter Selection

� In some cases, performance of DL-BLAS was better 
than ATLAS and GotoBLAS

� The performance of DL-BLAS is constantly not so wrong


