Performance Analysis and Optimization of Sparse
Matrix-Vector Multiplication on Intel Xeon Phi

Athena Elafrou Georgios Goumas Nectarios Koziris

National Technical University of Athens

OO QO Mational Tedhnical University of Athens

:8SLab

iWAPT
International Workshop on Automatic Performance Tuning
Orlando, Florida
2 June 2017

Outline

Motivation & Background
Performance analysis on Intel Xeon Phi
Optimization auto-tuning

Performance evaluation

Summary — Future directions

2 June 2, 2017

Motivation & Background

Sparse Matrices

— Dominated by zeroes (> 90%)
— Application domains:

» Scientific, discretization of
PDEs

» Graph analytics

» Machine learning

> Linear programming

— Compact representation

» Non-zero values
» Topological information

3 June 2, 2017

Motivation & Background

Storing a sparse matrix: the Compressed Sparse Row (CSR) format

7.5 29 28 2.7
6.8 57 3.8 0

0 0
0 0
24 62 32 0 0 0
0 0

A=
97 0 0 23
0 0 0 0 58 50
0 0 0 0 66 81
rowptr: 10 12 14

. // \\\\

val: (7529 28 27 68 57 3.8 24 6.2 3.2 9.7 23 58 5.0 6.6 8.1)

— Stores the columns of the non-zero elements and “pointers” to the
first non-zero element of each row
— Most commonly used format

> Relatively compact representation (= 12 - NN Z bytes)
> Straightforward implementation

4 June 2, 2017

Motivation & Background
The Sparse Matrix-Vector Multiplication (SpMV) kernel

y=A " x

A is a sparse matrix
x,y are dense vectors

— Ubiquitous in scientific and
engineering applications

— Dominates the execution
time of many iterative

Execution time breakdown (%)

. 20 @ SpMv
methods for the solution of . ©2vec. Ops
.]]]]]
c = 2 ® =
large sparse linear systems 5 3 i E :
(e.g., CG, GMRES) g 7 £ §
o

5 June 2, 2017

Motivation & Background
SpMV using CSR

for (i = 0; i <N; i++)
for (j = rowptr[i]; j < rowptr[i+1]; j++)
y[i] += val[j] * x[colind[j]];

— SpMV is characterized by:
» Extremely low flop:byte ratio (< 0.25)
— inherently memory bound (according to the Roofline Model)
> lrregular memory accesses to vector x
— may cause excessive cache misses
> Loop overheads in case of shorts rows
» Workload imbalance in case of highly uneven row lenghts

6 June 2, 2017

Performance analysis on Intel Xeon Phi

Which performance issues are more prominent?

Intel Sandy Bridge Intel MIC

@® Memory
bandwidth

@ Memory
latency

@ Workload
imbalance

@ Other

— On traditional multicore systems
» More compact formats (BCSR, SSS, CSX, CSB, ELL etc.)
» Reordering techniques
» Load balancing techniques

— On modern manycore systems?

7 June 2, 2017

Performance analysis on Intel Xeon Phi
Effect of different optimizations on CSR SpMV

® software prefetching @vectorization ¥ auto schedule
10.07

LIS .. 00y ..‘Q Yoo °

R N
1_07\/\/\/' '0"0‘0.‘0\/.."00 "V\’ > \/.V:v

Speedup

0.1

ins2+
FEM_3D_thermal2-
consph-|
amazon-2008-
rajat30

degme—

patternl-
G3_circuit

flickr—

Si02+
TSOPF_RS_b2383+
nd24k-

FullChip-
boneS10-

poisson3Db+
citationCiteseer
pkustk08-
delaunay_n19+
barrier2-12+
parabolic_fem+
offshore
webbase-1M-
ASIC_680k-
thermal2
eu-2005-
wikipedia-20051105+
circuitsM~
large-dense

Gad1As41H72

small-dense|
web-Google-|
human_genel-

Blindly applying/combining optimizations may hinder performance!
— We need to intelligently select the optimization(s) for every matrix
» Based on its performance bottleneck(s)

8 June 2, 2017

Performance analysis on Intel Xeon Phi

How do we define and determine bottlenecks?

— We define four bottlenecks

MB: Memory Bandwidth
» ML: Memory Latency

» IMB: Workload IMBalance
» CMP: CoMPutation

v

— We define a performance bound for every bottleneck

» Perform a “bound and bottleneck” analysis
» Estimate the performance that may be gained by eliminating each
bottleneck

— We design heuristics that determine the bottleneck(s) of a matrix
based on the estimated performance bounds

9 June 2, 2017

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (1/2)

2-NNZ

P =
B Masormat mintMay,min

Bmaw
where Biyqz is the maximum sustainable DRAM bandwidth of the system, Ma,,,.,..;,min
and My, min is the minimum memory traffic that can be generated by the matrix stored
in format and the vectors respectively

10 June 2, 2017 =

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (1/2)

MB

2-NNZ

Masormat mintMay,min

Pup =

Bmaw
where Biyqz is the maximum sustainable DRAM bandwidth of the system, Ma,,,.,..;,min
and My, min is the minimum memory traffic that can be generated by the matrix stored
in format and the vectors respectively

”
We run a modified SpMV kernel, where irregular accesses to the right-hand side vector
are completely eliminated by setting the column indices of all nonzero elements to zero

”

10 June 2, 2017

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (2/2)

2- NNZ

tmedian

Pryp =

where tedian 1S the median execution time of all threads

11 June 2, 2017

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (2/2)

IMB
2 - NNZ
Pryp = ——
tmadian
where tedian 1S the median execution time of all threads)
CMP
We run a modified SpMV kernel, where we completely eliminate indirect memory refer-
ences, resulting in unit-stride accesses only.
v,

11 June 2, 2017 =

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (2/2)

2 - NNZ
PIMB s =/
tmedian

where tmedian IS the median execution time of all threads

CMP

We run a modified SpMV kernel, where we completely eliminate indirect memory refer-
ences, resulting in unit-stride accesses only.

| \

Peak

| A\

2 - NNZ

MA,min+sz,min

Bmaz

Ppeak —

where M A min assumes we can only compress the indexing information of a sparse matrix
(not the values).

”

11 June 2, 2017

MB

IMB OCMP

CSR WPeak % ML

O W -osuap-abie|
| 4 O% - NGHNoID
O K \ormm:op
> { a¢-diyoing
“F L_vw_ocl
n I o \chmm uewny
p Ox % !mo:moom eipadiyim
- \moom ne
F “Z/HLYSY LYeD
% \mmmmn SH 4d0S1
¥ \mo_m
| 4 - - bl
P O3k 4 -grweyl
| . L_:E_o €9
| 5] ® - - Luiened
> Q awbep
> @k-ogjefel
% o \m_moo_o qom
PO ¥ i -8002-Uozeur
) % \;choo
R Qwv_owo QISY
| o _>: aseqgam
L \Eo;mto

o
%*

%* + \EQ " oljoqeJed
& \Nr 2Jalieq
* \mrc|>mc:m_mv
¥ \N_mc:wc“ as wa4d
o ﬁrmm:_
® -goxismyd
ox ¥ ‘meww:ocozm:o
: !nn_mcomm_oa

Performance analysis on Intel Xeon Phi
KIon A 4

“Bound and bottleneck” analysis

320V o VvV y
281 0V VYou v

* =
P | sSusp-|lBWS
o

I

167
127
g
4
ol

June 2, 2017

12

Performance analysis on Intel Xeon Phi
Heuristics for bottleneck detection

procedure CLASSIFY(Pcsr, Pus, Pvr. Prve, Pomp. Ppeak)
class + {}
if (Posr = Py = Py = Pryp) then
class < class U {M B}
end if

- P
if (PICJZI'; > TIMB) then

class < class U {IM B}
end Ii)f
if (PCN.ISLIIR > TML) then
class + class U {ML}
end if

. P,
if (Pcyp > Ppeak: and PCP:ZkP >Tcmp1) of

P
(Pomp < Pyp and FZE > Ty pa) then

class < class U{CMP}
end if
return class
end procedure

— We tune the hyperparameters Toyrp1/2, Tz and Trap using grid search

13 June 2, 2017 !—

Optimization auto-tuning

Formulation as a classification problem

— Classes represent performance bottlenecks
— A matrix is classified (multilabel classification)
» We propose two classifiers

— profiling-based (hand-tuned, more expensive)
— feature-based (trained with machine learning, very cheap)

— Optimizations that target the detected performance bottlenecks are
jointly applied
» Runtime code generation
» Focus on cheap CSR-based optimizations

Class Optimization

MB | column index compression through delta coding
ML software prefetching on vector x

IMB matrix split or auto scheduling (OpenMP)
CMP inner loop unrolling + vectorization

14 June 2, 2017

Optimization auto-tuning
Classifier A: profiling-based

— Uses the classification algorithm presented earlier
— Relies on micro-benchmarks to be run on-the-fly to estimate some of
the per-class upper bounds

> hence “profiling-based”
> hence more expensive

15 June 2, 2017

Optimization auto-tuning
Classifier A: profiling-based

— Uses the classification algorithm presented earlier

— Relies on micro-benchmarks to be run on-the-fly to estimate some of
the per-class upper bounds

> hence “profiling-based”
> hence more expensive

Can we do any better?

15 June 2, 2017

Optimization auto-tuning
Classifier B: feature-based (1/2)

— Uses real-valued structural features of the matrix
— Trained with supervised machine learning techniques (Decision Tree)
» Has to be trained on the target hardware platform, offline

Training data set
» 215 matrices from the UF Sparse Matrix Collection
> Not balanced in terms of class representation
— Labeling
> profiling-based classifier
> labels may not be accurate
— Machine-learning toolkit
> scikit-learn

— Only performs feature extraction on-the-fly

» hence “feature-based”
» hence cheap

16 June 2, 2017

Optimization auto-tuning
Classifier B: feature-based (2/2)

17

Feature Definition Complexity
size 0:exceeds or 1:fits in LLC o(1)
density N]\J,\QZ (1)
NN Zmin min{nnz,...,nnzy} O(N)
NN Zmax max{nnzi,...,nnzy} O(N)
NNZavg % Zivzl nnz; O(N)
nNzgy \/% fil(nnzi — NNzavg)? O(2N)
bWmin min{bw1,...,bwn} O(N)
bwmax max{bwi,...,bwy} O(N)
btwavg £33N b O(N)
buwsg Vo S (bwi — bwawg)? O(2N)
scatteravg % Zf\;l scatter; O(N)
scattersg \/% Zf\;l (scatter; — scattergyg)? O(2N)
clusteringavg % Zivzl clustering; O(NNZ)
missesavg % > oinq misses; O(NNZ)

June 2, 2017

Performance evaluation

Experimental setup

Hardware platform
> Intel Xeon Phi 3120P coprocessor
— 56 cores, 224 threads
64-bit Linux OS
ICC 15.0.0

OpenMP parallel programming API

double-precision floating-point

215 matrices from the UF Sparse Matrix Collection

18 June 2, 2017

Performance evaluation
Feature-based classifier accuracy
— Leave-One-Out cross validation
» assuming labels generated from profiling-based classifier
— Exact Match Ratio

» the percentage of samples for which the predicted set of classes is fully
correct

— Partial Match Ratio
» the percentage of samples for which at least one prediction is correct

Features Complexity | Accuracy | Accuracy
Exact Partial
(%) (%)
NNZ{min,max,sd} O(N) 80 95
bwavg

dispersion{ g sd}

size, bwigug, sd} O(NN2Z) 84 100
nnz{mi.n,maz,avg,sd}

misseSavg
dispersiongq

19 June 2, 2017

Ion

Performance evaluat

Raw performance

P T S]
[reeeeereceeeeres]

MB

IS
[ereceerereceeere|

MB

ASTITETISSSSY
[eeeeeeerrorceeare]

M8

N
PIIDINDNN

SOTSSTSY
[eeceseroee]

OIS
I

TSI
PRODIDIIIDNN

5 SO
22 PIINNN

feat

B3 prof

STIRTTSSSTSY
[terverareerer)

ML

Y
05 PO
25

[J oracle

SIS
[recreeceeerceeeee|

M baseline
vB

W MKL

o SO
22 RONDN
22

Lo SOSY
pederas)
=

SIS
ROV

MB

ATTTTTTSSSSSSY
[ereresresnerease]

M8

SOUUTSSS SRS
Rearererorvazererel

s/doyo

s mkl_dcsrmv ()

We compare to Intel MKL'

— Significant speedups for matrices that belong to the ML/IMB classes

— Performance stability

» No slowdowns!

June 2, 2017

20

Performance evaluation

Runtime overhead

Minimum number of solver iterations required to amortize cost

t
N, iters > £

/
tspmv - tspmv

tpre: online preprocessing time
tspmo: the execution time of SpMV before optimization

tipmy: the execution time of SpMV after optimization
Optimizer Niters,pest | Niters,avg | Niters,worst
trivial-single 470 928 8460
trivial-combined 2062 3802 38400
profiling-based 149 297 3200
feature-based 26 62 601

21 June 2, 2017

Summary — Future directions

Bottleneck-oriented optimization tuning for SpMV offers
— Performance stability

» Successfully captures diversity in sparsity patterns and hardware
platforms

— Low online overhead
» Using the feature-based classifier

Future directions
— Experiment on more platforms, e.g., GPUs
— Improve accuracy of feature-based classifier

— Expand the optimization pool

22 June 2, 2017

Thank youl!

Questions — Discussion

23 June 2, 2017

	Motivation & Background
	Performance analysis on Intel Xeon Phi
	Optimization auto-tuning
	Performance evaluation
	Summary – Future directions

