
Performance Analysis and Optimization of Sparse
Matrix-Vector Multiplication on Intel Xeon Phi
Athena Elafrou Georgios Goumas Nectarios Koziris

National Technical University of Athens

iWAPT
International Workshop on Automatic Performance Tuning

Orlando, Florida
2 June 2017

Outline

1 Motivation & Background

2 Performance analysis on Intel Xeon Phi

3 Optimization auto-tuning

4 Performance evaluation

5 Summary – Future directions

2 June 2, 2017

Motivation & Background
Sparse Matrices

– Dominated by zeroes (> 90%)
– Application domains:

▶ Scientific, discretization of
PDEs

▶ Graph analytics
▶ Machine learning
▶ Linear programming

– Compact representation
▶ Non-zero values
▶ Topological information

3 June 2, 2017

Motivation & Background
Storing a sparse matrix: the Compressed Sparse Row (CSR) format

..

..7.5 ..2.9 ..2.8 ..2.7 ..0 ..0

..6.8 ..5.7 ..3.8 ..0 ..0 ..0

..2.4 ..6.2 ..3.2 ..0 ..0 ..0

..9.7 ..0 ..0 ..2.3 ..0 ..0

..0 ..0 ..0 ..0 ..5.8 ..5.0

..0 ..0 ..0 ..0 ..6.6 ..8.1

.

.

.A = .

..rowptr:(..0 ..4 ..7 ..10 ..12 ..14 ..16 ..)

..colind: ..(..0 ..1 ..2 ..3 ..0 ..1 ..2 ..0 ..1 ..2 ..0 ..3 ..4 ..5 ..4 ..5 ..)

..val: ..(..7.5 ..2.9 ..2.8 ..2.7 ..6.8 ..5.7 ..3.8 ..2.4 ..6.2 ..3.2 ..9.7 ..2.3 ..5.8 ..5.0 ..6.6 ..8.1 ..)

– Stores the columns of the non-zero elements and “pointers” to the
first non-zero element of each row

– Most commonly used format
▶ Relatively compact representation (≈ 12·NNZ bytes)
▶ Straightforward implementation

4 June 2, 2017

Motivation & Background
The Sparse Matrix-Vector Multiplication (SpMV) kernel

y = A·x

A is a sparse matrix
x, y are dense vectors

– Ubiquitous in scientific and
engineering applications

– Dominates the execution
time of many iterative
methods for the solution of
large sparse linear systems
(e.g., CG, GMRES)

E
le

ct
ro

m
ag

n.

F
E

M

S
tif

fn
es

s

S
tr

uc
tu

ra
l

M
ic

ro
-F

E
M

0

20

40

60

80

100

E
xe

cu
tio

n
tim

e
br

ea
kd

ow
n

(%
)

SpMV
Vec. Ops

5 June 2, 2017

Motivation & Background
SpMV using CSR

SpMV kernel

f o r (i = 0; i < N; i++)
f o r (j = rowptr [i] ; j < rowptr [i +1]; j++)

y [i] += va l [j] * x [co l i nd [j]] ;

– SpMV is characterized by:
▶ Extremely low flop:byte ratio (< 0.25)

– inherently memory bound (according to the Roofline Model)
▶ Irregular memory accesses to vector x

– may cause excessive cache misses
▶ Loop overheads in case of shorts rows
▶ Workload imbalance in case of highly uneven row lenghts

6 June 2, 2017

Performance analysis on Intel Xeon Phi
Which performance issues are more prominent?

– On traditional multicore systems
▶ More compact formats (BCSR, SSS, CSX, CSB, ELL etc.)
▶ Reordering techniques
▶ Load balancing techniques

– On modern manycore systems?

7 June 2, 2017

Performance analysis on Intel Xeon Phi
Effect of different optimizations on CSR SpMV

sm
al

l-d
en

se
po

is
so

n3
D

b
ci

ta
tio

nC
ite

se
er

pk
us

tk
08

in
s2

F
E

M
_3

D
_t

he
rm

al
2

de
la

un
ay

_n
19

ba
rr

ie
r2

-1
2

pa
ra

bo
lic

_f
em

of
fs

ho
re

w
eb

ba
se

-1
M

A
S

IC
_6

80
k

co
ns

ph
am

az
on

-2
00

8
w

eb
-G

oo
gl

e
ra

ja
t3

0
de

gm
e

pa
tte

rn
1

G
3_

ci
rc

ui
t

th
er

m
al

2
fli

ck
r

S
iO

2
T

S
O

P
F

_R
S

_b
23

83
G

a4
1A

s4
1H

72
eu

-2
00

5
w

ik
ip

ed
ia

-2
00

51
10

5
hu

m
an

_g
en

e1
nd

24
k

F
ul

lC
hi

p
bo

ne
S

10
ci

rc
ui

t5
M

la
rg

e-
de

ns
e0.1

1.0

10.0

S
pe

ed
up

software prefetching vectorization auto schedule

– Blindly applying/combining optimizations may hinder performance!
– We need to intelligently select the optimization(s) for every matrix

▶ Based on its performance bottleneck(s)

8 June 2, 2017

Performance analysis on Intel Xeon Phi
How do we define and determine bottlenecks?

– We define four bottlenecks
▶ MB: Memory Bandwidth
▶ ML: Memory Latency
▶ IMB: Workload IMBalance
▶ CMP: CoMPutation

– We define a performance bound for every bottleneck
▶ Perform a “bound and bottleneck” analysis
▶ Estimate the performance that may be gained by eliminating each

bottleneck

– We design heuristics that determine the bottleneck(s) of a matrix
based on the estimated performance bounds

9 June 2, 2017

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (1/2)

MB

PMB =
2·NNZ

MAformat,min+Mxy,min

Bmax

where Bmax is the maximum sustainable DRAM bandwidth of the system, MAformat,min

and Mxy,min is the minimum memory traffic that can be generated by the matrix stored
in format and the vectors respectively

ML
We run a modified SpMV kernel, where irregular accesses to the right-hand side vector
are completely eliminated by setting the column indices of all nonzero elements to zero

10 June 2, 2017

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (1/2)

MB

PMB =
2·NNZ

MAformat,min+Mxy,min

Bmax

where Bmax is the maximum sustainable DRAM bandwidth of the system, MAformat,min

and Mxy,min is the minimum memory traffic that can be generated by the matrix stored
in format and the vectors respectively

ML
We run a modified SpMV kernel, where irregular accesses to the right-hand side vector
are completely eliminated by setting the column indices of all nonzero elements to zero

10 June 2, 2017

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (2/2)

IMB

PIMB =
2·NNZ

tmedian

where tmedian is the median execution time of all threads

CMP
We run a modified SpMV kernel, where we completely eliminate indirect memory refer-
ences, resulting in unit-stride accesses only.

Peak

Ppeak =
2·NNZ

MA,min+Mxy,min

Bmax

where MA,min assumes we can only compress the indexing information of a sparse matrix
(not the values).

11 June 2, 2017

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (2/2)

IMB

PIMB =
2·NNZ

tmedian

where tmedian is the median execution time of all threads

CMP
We run a modified SpMV kernel, where we completely eliminate indirect memory refer-
ences, resulting in unit-stride accesses only.

Peak

Ppeak =
2·NNZ

MA,min+Mxy,min

Bmax

where MA,min assumes we can only compress the indexing information of a sparse matrix
(not the values).

11 June 2, 2017

Performance analysis on Intel Xeon Phi
Per-bottleneck performance bounds (2/2)

IMB

PIMB =
2·NNZ

tmedian

where tmedian is the median execution time of all threads

CMP
We run a modified SpMV kernel, where we completely eliminate indirect memory refer-
ences, resulting in unit-stride accesses only.

Peak

Ppeak =
2·NNZ

MA,min+Mxy,min

Bmax

where MA,min assumes we can only compress the indexing information of a sparse matrix
(not the values).

11 June 2, 2017

Performance analysis on Intel Xeon Phi
“Bound and bottleneck” analysis

12 June 2, 2017

Performance analysis on Intel Xeon Phi
Heuristics for bottleneck detection

procedure Classify(PCSR, PMB , PML, PIMB , PCMP , Ppeak)
class← {}
if (PCSR ≈ PMB ≈ PML ≈ PIMB) then

class← class ∪ {MB}
end if
if (PIMB

PCSR
> TIMB) then

class← class ∪ {IMB}
end if
if (PML

PCSR
> TML) then

class← class ∪ {ML}
end if
if (PCMP > Ppeak and PCMP

Ppeak
> TCMP1) or

(PCMP < PMB and PCMP
PCSR

> TCMP2) then
class← class ∪ {CMP}

end if
return class

end procedure

– We tune the hyperparameters TCMP1/2, TML and TIMB using grid search

13 June 2, 2017

Optimization auto-tuning
Formulation as a classification problem

– Classes represent performance bottlenecks
– A matrix is classified (multilabel classification)

▶ We propose two classifiers
– profiling-based (hand-tuned, more expensive)
– feature-based (trained with machine learning, very cheap)

– Optimizations that target the detected performance bottlenecks are
jointly applied

▶ Runtime code generation
▶ Focus on cheap CSR-based optimizations

Class Optimization
MB column index compression through delta coding
ML software prefetching on vector x
IMB matrix split or auto scheduling (OpenMP)
CMP inner loop unrolling + vectorization

14 June 2, 2017

Optimization auto-tuning
Classifier A: profiling-based

– Uses the classification algorithm presented earlier
– Relies on micro-benchmarks to be run on-the-fly to estimate some of

the per-class upper bounds
▶ hence “profiling-based”
▶ hence more expensive

Can we do any better?

15 June 2, 2017

Optimization auto-tuning
Classifier A: profiling-based

– Uses the classification algorithm presented earlier
– Relies on micro-benchmarks to be run on-the-fly to estimate some of

the per-class upper bounds
▶ hence “profiling-based”
▶ hence more expensive

Can we do any better?

15 June 2, 2017

Optimization auto-tuning
Classifier B: feature-based (1/2)

– Uses real-valued structural features of the matrix
– Trained with supervised machine learning techniques (Decision Tree)

▶ Has to be trained on the target hardware platform, offline
– Training data set

▶ 215 matrices from the UF Sparse Matrix Collection
▶ Not balanced in terms of class representation

– Labeling
▶ profiling-based classifier
▶ labels may not be accurate

– Machine-learning toolkit
▶ scikit-learn

– Only performs feature extraction on-the-fly
▶ hence “feature-based”
▶ hence cheap

16 June 2, 2017

Optimization auto-tuning
Classifier B: feature-based (2/2)

Feature Definition Complexity
size 0:exceeds or 1:fits in LLC Θ(1)

density NNZ
N2 Θ(1)

nnzmin min{nnz1, . . . , nnzN} Θ(N)
nnzmax max{nnz1, . . . , nnzN} Θ(N)

nnzavg 1
N

∑N
i=1 nnzi Θ(N)

nnzsd
√

1
N

∑N
i=1(nnzi − nnzavg)2 Θ(2N)

bwmin min{bw1, . . . , bwN} Θ(N)
bwmax max{bw1, . . . , bwN} Θ(N)

bwavg 1
N

∑N
i=1 bwi Θ(N)

bwsd
√

1
N

∑N
i=1(bwi − bwavg)2 Θ(2N)

scatteravg 1
N

∑N
i=1 scatteri Θ(N)

scattersd
√

1
N

∑N
i=1(scatteri − scatteravg)2 Θ(2N)

clusteringavg
1
N

∑N
i=1 clusteringi Θ(NNZ)

missesavg
1
N

∑N
i=1 missesi Θ(NNZ)

17 June 2, 2017

Performance evaluation
Experimental setup

– Hardware platform
▶ Intel Xeon Phi 3120P coprocessor

– 56 cores, 224 threads

– 64-bit Linux OS
– ICC 15.0.0
– OpenMP parallel programming API
– double-precision floating-point
– 215 matrices from the UF Sparse Matrix Collection

18 June 2, 2017

Performance evaluation
Feature-based classifier accuracy

– Leave-One-Out cross validation
▶ assuming labels generated from profiling-based classifier

– Exact Match Ratio
▶ the percentage of samples for which the predicted set of classes is fully

correct
– Partial Match Ratio

▶ the percentage of samples for which at least one prediction is correct

Features Complexity Accuracy
Exact
(%)

Accuracy
Partial
(%)

nnz{min,max,sd}
bwavg

dispersion{avg,sd}

O(N) 80 95

size, bw{avg,sd}
nnz{min,max,avg,sd}

missesavg
dispersionsd

O(NNZ) 84 100

19 June 2, 2017

Performance evaluation
Raw performance

sm
all-d

ense

poiss
on3Db

cita
tio

nCite
se

er

pku
stk

08
ins2

FEM_3D_therm
al2

delaunay_
n19

barrie
r2-12

parabolic_
fem

offs
hore

webbase
-1M

ASIC_680k

co
nsp

h

amazo
n-2008

web-G
oogle

rajat30
degme

patte
rn1

G3_cir
cu

it

therm
al2

flic
kr

SiO2

TSOPF_RS_b2383

Ga41As4
1H72

eu-2005

wikip
edia-20051105

human_gene1
nd24k

FullC
hip

boneS10

cir
cu

it5
M

large-dense
0

4

8

12

16

20

24

G
flo

p/
s

MB

ML
IMB

ML

MB

IMB
CMP

MB

ML
IMB

ML
IMB ML

IMB

ML
IMB ML

IMB
CMP

ML
IMB
CMP

MB

ML
IMB

ML

IMB
CMP

IMB
CMP

ML

ML
IMB

ML
IMB ML

IMB
CMP

ML
IMB

IMB
ML
IMB ML

IMB

ML

ML

MB

ML
IMB
CMP

MB

IMB
CMP

MB

MKL baseline oracle prof feat

– We compare to Intel MKL’s mkl_dcsrmv()
– Significant speedups for matrices that belong to the ML/IMB classes
– Performance stability

▶ No slowdowns!

20 June 2, 2017

Performance evaluation
Runtime overhead

Minimum number of solver iterations required to amortize cost

Niters ≫
tpre

tspmv − t′spmv

tpre: online preprocessing time
tspmv: the execution time of SpMV before optimization
t′spmv: the execution time of SpMV after optimization

Optimizer Niters,best Niters,avg Niters,worst

trivial-single 470 928 8460
trivial-combined 2062 3802 38400
profiling-based 149 297 3200
feature-based 26 62 601

21 June 2, 2017

Summary – Future directions

Bottleneck-oriented optimization tuning for SpMV offers
– Performance stability

▶ Successfully captures diversity in sparsity patterns and hardware
platforms

– Low online overhead
▶ Using the feature-based classifier

Future directions
– Experiment on more platforms, e.g., GPUs
– Improve accuracy of feature-based classifier
– Expand the optimization pool

22 June 2, 2017

Thank you!

Questions – Discussion

23 June 2, 2017

	Motivation & Background
	Performance analysis on Intel Xeon Phi
	Optimization auto-tuning
	Performance evaluation
	Summary – Future directions

