Performance Analysis and Optimization of Sparse Matrix-Vector Multiplication on Intel Xeon Phi

Athena Elafrou Georgios Goumas Nectarios Koziris

National Technical University of Athens

iWAPT

International Workshop on Automatic Performance Tuning Orlando, Florida 2 June 2017

Outline

1 Motivation & Background

- 2 Performance analysis on Intel Xeon Phi
- **3** Optimization auto-tuning
- 4 Performance evaluation
- 5 Summary Future directions

Motivation & Background

Sparse Matrices

- Dominated by zeroes (> 90%)
- Application domains:
 - Scientific, discretization of PDEs
 - Graph analytics
 - Machine learning
 - Linear programming
- Compact representation
 - Non-zero values
 - Topological information

Motivation & Background

Storing a sparse matrix: the Compressed Sparse Row (CSR) format

- Stores the columns of the non-zero elements and "pointers" to the first non-zero element of each row
- Most commonly used format
 - Relatively compact representation ($\approx 12 \cdot NNZ$ bytes)
 - Straightforward implementation

Motivation & Background

The Sparse Matrix-Vector Multiplication (SpMV) kernel

 $y = A \ \cdot \ x$

A is a sparse matrix x, y are dense vectors

- Ubiquitous in scientific and engineering applications
- Dominates the execution time of many iterative methods for the solution of large sparse linear systems (e.g., CG, GMRES)

Motivation & Background SpMV using CSR

SpMV kernel

```
for (i = 0; i < N; i++)
for (j = rowptr[i]; j < rowptr[i+1]; j++)
    y[i] += val[j] * x[colind[j]];</pre>
```

- SpMV is characterized by:
 - ▶ Extremely low *flop:byte* ratio (< 0.25)
 - inherently memory bound (according to the Roofline Model)
 - Irregular memory accesses to vector x
 - may cause excessive cache misses
 - Loop overheads in case of shorts rows
 - Workload imbalance in case of highly uneven row lenghts

Which performance issues are more prominent?

- On traditional multicore systems
 - More compact formats (BCSR, SSS, CSX, CSB, ELL etc.)
 - Reordering techniques
 - Load balancing techniques
- On modern manycore systems?

Effect of different optimizations on CSR SpMV

- Blindly applying/combining optimizations may hinder performance!
- We need to intelligently select the optimization(s) for every matrix
 - Based on its performance bottleneck(s)

How do we define and determine bottlenecks?

- We define four bottlenecks
 - MB: Memory Bandwidth
 - ML: Memory Latency
 - IMB: Workload IMBalance
 - CMP: CoMPutation
- We define a performance bound for every bottleneck
 - Perform a "bound and bottleneck" analysis
 - Estimate the performance that may be gained by eliminating each bottleneck
- We design heuristics that determine the bottleneck(s) of a matrix based on the estimated performance bounds

Per-bottleneck performance bounds (1/2)

MB

$$P_{MB} = \frac{2 \cdot NNZ}{\frac{M_{A_{format},min} + M_{xy,min}}{B_{max}}}$$

where B_{max} is the maximum sustainable DRAM bandwidth of the system, $M_{A_{format},min}$ and $M_{xy,min}$ is the minimum memory traffic that can be generated by the matrix stored in *format* and the vectors respectively

Per-bottleneck performance bounds (1/2)

MB

$$P_{MB} = \frac{2 \cdot NNZ}{\frac{M_{A_{format},min} + M_{xy,min}}{B_{max}}}$$

where B_{max} is the maximum sustainable DRAM bandwidth of the system, $M_{A_{format},min}$ and $M_{xy,min}$ is the minimum memory traffic that can be generated by the matrix stored in *format* and the vectors respectively

ML

We run a modified SpMV kernel, where irregular accesses to the right-hand side vector are completely eliminated by setting the column indices of all nonzero elements to zero

Per-bottleneck performance bounds (2/2)

IMB

$$P_{IMB} = \frac{2 \cdot NNZ}{t_{median}}$$

where t_{median} is the median execution time of all threads

Per-bottleneck performance bounds (2/2)

IMB

$$P_{IMB} = \frac{2 \cdot NNZ}{t_{median}}$$

where t_{median} is the median execution time of all threads

CMP

We run a modified SpMV kernel, where we completely eliminate indirect memory references, resulting in unit-stride accesses only.

Per-bottleneck performance bounds (2/2)

IMB

$$P_{IMB} = \frac{2 \cdot NNZ}{t_{median}}$$

where t_{median} is the median execution time of all threads

CMP

We run a modified SpMV kernel, where we completely eliminate indirect memory references, resulting in unit-stride accesses only.

Peak

$$P_{peak} = \frac{2 \cdot NNZ}{\frac{M_{A,min} + M_{xy,min}}{B_{max}}}$$

where $M_{A,min}$ assumes we can only compress the indexing information of a sparse matrix (not the values).

"Bound and bottleneck" analysis

Heuristics for bottleneck detection

procedure CLASSIFY (P_{CSR} , P_{MB} , P_{ML} , P_{IMB} , P_{CMP} , P_{peak}) $class \leftarrow \{\}$ if $(P_{CSR} \approx P_{MB} \approx P_{ML} \approx P_{IMB})$ then $class \leftarrow class \cup \{MB\}$ end if if $\left(\frac{P_{IMB}}{P_{OSB}} > T_{IMB}\right)$ then $class \leftarrow class \cup \{IMB\}$ end if if $\left(\frac{P_{ML}}{P_{COP}} > T_{ML}\right)$ then $class \leftarrow class \cup \{ML\}$ end if if $(P_{CMP} > P_{peak} \text{ and } \frac{P_{CMP}}{P_{peak}} > T_{CMP1})$ or $(P_{CMP} < P_{MB} \text{ and } \frac{P_{CMP}}{P_{CSP}} > T_{CMP2})$ then $class \leftarrow class \cup \{CM\tilde{P}\}$ end if return class end procedure

– We tune the hyperparameters $T_{CMP1/2}, T_{ML}$ and T_{IMB} using grid search

Formulation as a classification problem

- Classes represent performance bottlenecks
- A matrix is classified (multilabel classification)
 - We propose two classifiers
 - profiling-based (hand-tuned, more expensive)
 - feature-based (trained with machine learning, very cheap)
- Optimizations that target the detected performance bottlenecks are jointly applied
 - Runtime code generation
 - Focus on cheap CSR-based optimizations

Class	Optimization
MB	column index compression through delta coding
ML	software prefetching on vector x
IMB	matrix split or <i>auto</i> scheduling (OpenMP)
CMP	inner loop unrolling $+$ vectorization

Classifier A: profiling-based

- Uses the classification algorithm presented earlier
- Relies on micro-benchmarks to be run on-the-fly to estimate some of the per-class upper bounds
 - hence "profiling-based"
 - hence more expensive

Classifier A: profiling-based

- Uses the classification algorithm presented earlier
- Relies on micro-benchmarks to be run on-the-fly to estimate some of the per-class upper bounds
 - hence "profiling-based"
 - hence more expensive

Can we do any better?

Classifier B: feature-based (1/2)

- Uses real-valued structural features of the matrix
- Trained with supervised machine learning techniques (Decision Tree)
 - Has to be trained on the target hardware platform, offline
- Training data set
 - 215 matrices from the UF Sparse Matrix Collection
 - Not balanced in terms of class representation
- Labeling
 - profiling-based classifier
 - labels may not be accurate
- Machine-learning toolkit
 - scikit-learn
- Only performs feature extraction on-the-fly
 - hence "feature-based"
 - hence cheap

Classifier B: feature-based (2/2)

Feature	Definition	Complexity
size	0:exceeds or 1:fits in LLC	$\Theta(1)$
density	$\frac{NNZ}{N^2}$	$\Theta(1)$
$nnz_{\sf min}$	$\min\{nnz_1,\ldots,nnz_N\}$	$\Theta(N)$
$nnz_{\sf max}$	$\max\{nnz_1,\ldots,nnz_N\}$	$\Theta(N)$
nnz_{avg}	$\frac{1}{N}\sum_{i=1}^{N}nnz_{i}$	$\Theta(N)$
$nnz_{\rm sd}$	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(nnz_i - nnz_{avg})^2}$	$\Theta(2N)$
$bw_{\sf min}$	$\min\{bw_1,\ldots,bw_N\}$	$\Theta(N)$
$bw_{\sf max}$	$\max\{bw_1,\ldots,bw_N\}$	$\Theta(N)$
bw_{avg}	$\frac{1}{N}\sum_{i=1}^{N}bw_i$	$\Theta(N)$
$bw_{\sf sd}$	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(bw_i - bw_{avg})^2}$	$\Theta(2N)$
$scatter_{avg}$	$\frac{1}{N}\sum_{i=1}^{N} scatter_i$	$\Theta(N)$
$scatter_{\rm sd}$	$\sqrt{\frac{1}{N}\sum_{i=1}^{N}(scatter_i - scatter_{avg})^2}$	$\Theta(2N)$
$clustering_{avg}$	$\frac{1}{N}\sum_{i=1}^{N} clustering_i$	$\Theta(NNZ)$
$misses_{avg}$	$\frac{1}{N}\sum_{i=1}^{N} misses_i$	$\Theta(NNZ)$

Experimental setup

- Hardware platform
 - Intel Xeon Phi 3120P coprocessor
 - 56 cores, 224 threads
- 64-bit Linux OS
- ICC 15.0.0
- OpenMP parallel programming API
- double-precision floating-point
- 215 matrices from the UF Sparse Matrix Collection

Feature-based classifier accuracy

- Leave-One-Out cross validation
 - assuming labels generated from profiling-based classifier
- Exact Match Ratio
 - the percentage of samples for which the predicted set of classes is fully correct
- Partial Match Ratio
 - the percentage of samples for which at least one prediction is correct

Features	Complexity	Accuracy	Accuracy
		Exact	Partial
		(%)	(%)
$nnz_{\{min,max,sd\}}$	O(N)	80	95
bw_{avg}			
$dispersion_{\{avg,sd\}}$			
$size, bw_{\{avg, sd\}}$	O(NNZ)	84	100
$nnz_{\{min,max,avg,sd\}}$			
$misses_{avg}$			
$dispersion_{sd}$			

Raw performance

- We compare to Intel MKL's mkl_dcsrmv()
- Significant speedups for matrices that belong to the ML/IMB classes
- Performance stability
 - No slowdowns!

Runtime overhead

Minimum number of solver iterations required to amortize cost

$$N_{iters} \gg rac{t_{pre}}{t_{spmv} - t'_{spmv}}$$

 t_{pre} : online preprocessing time t_{spmv} : the execution time of SpMV before optimization t'_{spmv} : the execution time of SpMV after optimization

Optimizer	$N_{iters, best}$	$N_{iters,avg}$	$N_{iters,worst}$
trivial-single	470	928	8460
trivial-combined	2062	3802	38400
profiling-based	149	297	3200
feature-based	26	62	601

Summary – Future directions

Bottleneck-oriented optimization tuning for SpMV offers

- Performance stability
 - Successfully captures diversity in sparsity patterns and hardware platforms
- Low online overhead
 - Using the feature-based classifier

Future directions

- Experiment on more platforms, e.g., GPUs
- Improve accuracy of feature-based classifier
- Expand the optimization pool

Thank you!

Questions – Discussion

