Quadruple-precision BLAS using Bailey's arithmetic with FMA instruction : Its performance and applications iWAPT 2017

June 2, 2017

### Susumu YAMADA<sup>1</sup> Toshiyuki IMAMURA<sup>2</sup>, Takuya Ina<sup>1</sup>, Yasuhiro IDOMURA<sup>1</sup>, Narimasa SASA<sup>1</sup>, Masahiko MACHIDA <sup>1</sup>

<sup>1</sup> Center for Computational Science and e-Systems, Japan Atomic Energy Agency <sup>2</sup> AICS, RIKEN

### Outline

- ✓ Introduction of quadruple precision operations
- ✓ Bailey's double-double arithmetic
- ✓ Speedup for Bailey's double-double arithmetic by FMA instruction
- ✓ Quad-precision Eigenvalue solver using Quad-precision BLAS+FMA
- ✓ Performance tuning for Quad-precision BLAS+FMA
- ✓ Conclusions

### **Necessity of quad-precision operations**

- Nowadays, we can execute ultra-huge-scale simulations on ultra-large parallel computers.
- Since the huge simulations require a great number of the floating-point operations, there would be a possibility that the rounding error accumulates so much until its result has little validity.
- Actually, when we solved the eigenvalue problem for 375 000dimentional matrix using the direct method with the real(8) values, the result has only a few digit of accuracy[1].

One of the strategies to avoid the precision issue is to use quad-precision values.

[1] S. Yamada, T. Imamura, T. Kano, and M. Machida, High-Performance Computing for Exact Numerical Approaches to Quantum Many-Body Problems on the Earth Simulator, *Proc. of SC06* (2006).

### **Two quad-precision formats**

### **Real(16) format**

implement: very easy
accuracy: about 34 decimal digits
speed: very slow (software implementation)

### double-double arithmetic (by D.H. Bailey)

implement: easy
accuracy: about 32 decimal digits
speed: high (hardware implementation)

A quadrature-precision value is implemented using a pair of double-precision values.

## Performance comparison with Real(16) format and Bailey's arithmetic

N=51,200,000



### AXPY (ax+y) on SGI ICE X

When the number of the threads is small, Bailey's arithmetic is about 10 times faster than real(16) format. When the number is 12, about 4 times faster.

### **Quadruple Precision BLAS**

#### **BLAS (Basic Linear Algebra Subprograms)**

40 routines

We developed quad-precision BLAS using Bailey's double-double arithmetic.



**QPBLAS** (Quadruple Precision Basic Linear Algebra Subprograms)

### **Quad-precision algorithm using Bailey's arithmetic**

# Addition C=A+B using Bailey's double-double arithmetic

```
subroutine dd_add(ch,cl,ah,al,bh,bl)
implicit none
double precision ch, cl, ah, al, bh, bl
double precision p1, p2, s1
p1 = ah + al
p2 = p1 - ah
cl = (ah -(p1-p2)) + (bh - p2)
ch = p1
cl = cl +al + bl
s1 = ch + cl
cl = cl - (s1 - ch)
ch = s1
end
```

11 floating-point operations

# Multiplication C=A \* B using Bailey's double-double arithmetic

```
subroutine dd_mul(ch,cl,ah,al,bh,bl)
implicit none
double precision ch, cl, ah, al, bh, bl
double precision u1, p1, p2, r1, r2, s1
ch = ah *bh
u1 = 134217729.0*ah
p1 = u1 - (u1 - ah)
p2 = ah - p1
u1 = 134217729.0*bh
r1 = u1 - (u1 - bh)
r2 = bh - r1
cl = ((p1*r1-ch) + p1*r2 + p2*r1) + p2*r2
cl = cl + (ah * bl + al * bh)
s1 = ch + cl
cl = cl - (s1 - ch)
ch = s1
end
```

24 floating-point operations

### **Bailey's arithmetic using FMA instruction**

#### **FMA** instruction

For double precision values a, b, and x,

a\*x+b is calculated using 128-bit values and the result with a 64-bit value is obtained.

When we utilize the FAM instruction, we can realize the Bailey's multiplication with fewer operations.

```
void bailey_dd_mul_fma(x_hi, x_lo, y_hi, y_lo, z_hi, z_lo)
double x_hi, x_lo, y_hi, y_lo, *z_hi, *z_lo;
{
    double p1, p2;
    p1 = (x_hi) * (y_hi);
    p2 = fma((x_hi), (y_hi), p1);
    p2 += ((x_lo) * (y_hi) + (x_hi) * (y_lo));
    *z_hi = p1 + p2;
    *z_lo = p2 • ((*z_hi) p1);
```

return;

#### **10 floating-point operations**

Original method requires **24 floatingpoint operations.** 

The multiplication using FMA is realized with only **10 floating-point operations.** 

The decrease is **about 60%**.

Reduction of calculation time

Replace the multiplication operations in QPBLAS by the operations using FMA instruction.

### **Number of instructions of DD arithmetic**

When we utilize a compiler optimization, the multiply-accumulation operation is executed by one instruction.

#### **Quad-precision multiplication using** Bailey's arithmetic without FMA instruction



6 multiply-accumulation operations No FMA: 18 instructions

#### Quad-precision multiplication using Bailey's arithmetic with FMA instruction

```
void dd_mul_fma(ch,cl,ah,al,bh,bl)
double ah,al,bh,bl,*ch,*cl;
{
  double p1, p2;
  p1 = ah * bh;
  p2 = fma(ah,bh,-p1);
  p2+= al*bl + ah*bl
  *ch = p1 + p2;
  *cl = p2 - (*ch - p1);
  return;
}
```

3 multiply-accumulation operations

With FMA: 7 instructions

### **Theoretical elapsed time**

Theoretical elapsed time (sec) = max(cal., comm.)

#### **Calculation time**

$$cal. = \frac{\# \text{add} * 11 + \# \text{mul} * (18 \text{ (no FMA) or 7(FMA)})}{\# \text{Clock} * \# \text{INST} * \# \text{THREADS}}$$

#### Time for data transferred from memory

 $comm. = \frac{\text{The number of transferred data (byte)}}{\text{Memory bandwidth (byte/sec)}}$ 

#add : the number of quad-precision additions

#mul : the number of quad-precision multiplications

#Clock : the clock rate of the processor

#INST : the number of the executable instructions per cycle per clock

**#THREADS** : the number of the threads

# **Details of computers**

|                                                               | SGI ICE X<br>(Japan Atomic Energy Agency)                    | FUJITSU FX10<br>(The University of Tokyo)                             |  |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| CPU                                                           | Intel Xeon E5-2680 v3<br>( <mark>2.5GHz</mark> , 30MB cache) | SPARC64 <sup>™</sup> IXfx<br>( <mark>1.848GHz</mark> , 12MB L2 cache) |  |  |  |
| Number of executable instructions per cycle per clock (#INST) | 8                                                            | 4                                                                     |  |  |  |
| Number of cores<br>per CPU                                    | 12                                                           | 16                                                                    |  |  |  |
| Number of CPUs<br>per node                                    | 2 CPUs                                                       | 1 CPU                                                                 |  |  |  |
| Memory per node                                               | 64GB                                                         | 32GB                                                                  |  |  |  |
| Memory bandwidth                                              | 68GB/s                                                       | 85GB/s                                                                |  |  |  |
| Network                                                       | Infini Band                                                  | Torus network (Tofu)                                                  |  |  |  |
| Network<br>Bandwidth                                          | 6.8GB/s                                                      | 5GB/s                                                                 |  |  |  |
| Complier                                                      | Intel compiler                                               | Fujitsu compiler                                                      |  |  |  |

### Elapsed time of Level 1 (small size)



- The ratio of the theoretical elapsed time to the real one is 50% on ICE X and 70% on FX10.
- When FMA instruction is utilized, the elapsed time decreases by about 45% on ICE X and 25% on FX10.
- Since all data are stored on cache, the memory bandwidth does not influence the elapsed time. Therefore, as the number of the threads increases, the elapsed time reduces.

### Elapsed time of Level 1 (large size)

AXPY

N=51,200,000



- On small threads, the routne+FMA is faster than the original one.
- On many threads, whether FMA is utilized or not, the elapsed times are almost the same.
- At this time, the elapsed time of quad-precision routine is about twice as that of the doubleprecision one.



The elapsed time depends on the number of the transferred data from memory.

### **Elapsed time of Level 2**

GEMV (Level 2)

N=M=10,000



When the number of threads becomes larger, the performance is limited by the memory bandwidth.

### **Elapsed time of Level3**

GEMM (Level3)



- When using FMA instruction, we obtain  $20 \sim 30\%$  speedup with any number of threads.
- The ratio of floating-point operations to data movement from memory is sufficiently large for Level 3 routine.

Elapsed time for the Level 3 routine depends on FLOPS, not on the memory bandwidth.

### Performance and memory throughput on FX10



The memory throughput of Level 1 routine QPAXPY is saturated with 5 threads.

 $\Rightarrow$  The performance increase up to 5 threads.

The throughput for Level 2 routine is almost saturated with 16 threads.

 $\square$  The performance is almost saturated with 16 threads.

When the number of the threads increases for Level 3, the throughput hardly changed.

The routine has a possibility to achieve a high performance on a many-core processor.

### **Overview of QPEigenK**

We developed the quad-precision eigenvalue solver QPEigenK based on doubleprecision direct solver EigenK with the double-double (DD) arithmetic. We extended the necessary routines in BLAS, LAPACK, ScaLAPACK, and MPI into quad-precision ones with DD arithmetic.



Performance test for QPEigenK with QPBLAS or QPBLAS+FMA.

Parallelization : Flat MPI Matrix size : 16,000

### **QPEigenK on ICEX**



|       | 24 cores |          | 48 cores |          |          | 96 cores |          |          | 192 cores |          |          |       |
|-------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|-------|
|       | QPBLAS   | +FMA     | ratio    | QPBLAS   | +FMA     | ratio    | QPBLAS   | +FMA     | ratio     | QPBLAS   | +FMA     | ratio |
| Trd   | 673.2804 | 634.8092 | 0.94     | 348.4344 | 328.4325 | 0.94     | 186.9448 | 176.9431 | 0.95      | 103.9656 | 98.85356 | 0.95  |
| D&C   | 161.3854 | 118.9403 | 0.74     | 89.03776 | 64.72398 | 0.73     | 48.00655 | 36.2905  | 0.76      | 27.36227 | 21.63406 | 0.79  |
| BTr   | 1148.437 | 1045.68  | 0.91     | 571.3249 | 517.7198 | 0.91     | 285.6589 | 256.2367 | 0.90      | 145.9618 | 128.2119 | 0.88  |
| Totel | 1983.103 | 1799.429 | 0.91     | 1008.797 | 910.8763 | 0.90     | 520.6103 | 469.4703 | 0.90      | 277.2896 | 248.6995 | 0.90  |

Performance of D&C improves most, when using FMA instruction. But the ratio of D&C is small.



### **QPEigenK on FX10**



|       | 3:       | 2 cores  |       | 64 cores |          |       | 128 cores |          |       |  |
|-------|----------|----------|-------|----------|----------|-------|-----------|----------|-------|--|
|       | QPBLAS   | +FMA     | ratio | QPBLAS   | +FMA     | ratio | QPBLAS    | +FMA     | ratio |  |
| Trd   | 1140.561 | 1113.705 | 0.98  | 586.678  | 567.0671 | 0.97  | 332.7886  | 326.2054 | 0.98  |  |
| D&C   | 248.6933 | 222.5274 | 0.89  | 145.4987 | 131.6127 | 0.90  | 78.28661  | 71.75055 | 0.92  |  |
| BTr   | 2689.077 | 1902.329 | 0.71  | 1394.92  | 997.367  | 0.71  | 713.5748  | 523.217  | 0.73  |  |
| Totel | 4078.332 | 3238.561 | 0.79  | 2127.097 | 1696.047 | 0.80  | 1124.65   | 921.173  | 0.82  |  |

The decrease in the elapsed time of back-transformation is about 30%.

Total:20% speedup

### **Performance improvement by tuning**

QPBLAS and QPBLAS+FMA are programed without special tunings.

An appropriate tuning has a possibility to improve their performance.



In order to examine the efficiency of loop unrolling for QPBLAS+FMA, we unroll the loops of quad-precision GEMV manually and evaluate the performance.

### **Unrolling strategy for QPGEMV**

```
All calculations are executed with
#pragma omp parallel for
for (j=0, j<M, i++) {
                                    quad-precision using DD arithmetic.
  y[j] = 0.0;
#pragma omp parallel for
  for (i=0,i<N,j++) {/* unrolling */
    x[i]=alpha*x[i]; /* SIMD */
#pragma omp parallel private (work,j)
  for (j=0, j < M, j++) {
    work[j]=0.0;
#pragma omp for
  for (i=0, i<N, i++) {
    for (j=0, j<M, j++) { /* unrolling */
      work[j]=work[j]+A[i][j]*x[i]; /* SIMD */
#pragma omp critical
                                           Reduction operation of OpenMIP is
  for (j=0, j < M, i++) {
                                           not applicable for Bailey's arithmetic.
    y[j]=y[j]+work[j]; /* SIMD */
```

# Performance improvement by loop unrolling on ICE X





- When the matrix size is 1000, all date can be stored on cache. Therefore, speed up is obtained by unrolling.
- For other matrix size cases, the unrolling realized speedup up to 6 threads.
- When the number is 12, the performance depends on the memory bandwidth except for 1000-dimensional case. Therefore, unrolling has little effect for speedup.

### Performance improvement by loop unrolling on FX10



### Performance improvement by loop unrolling



In this case, we unrolled the Level 2 routine.

- Two-level nested loop
- Unrolled only Inner loop

When we unroll the outer loop, we have a possibility to obtain more speedup.

Level 3 routines Three-level nested loop

The combination of the loop unrolling for each loop is complicated.

It is difficult to find the optimal unrolling factor.



### Conclusions

We developed the quadrature precision BLAS (QPBLAS) using FMA instruction.

QPBLAS with FMA is basically faster than the original QPBLAS. However, the number of the threads is large, their performances are the almost same for some Level 1 and level 2 routines.

For the quadrature precision eigenvalue solver (QPEigenK), about 10% (ICEX) or 20% (FX10) speedup can be obtained by only replacing the original QPBLAS to QPBLAS+FMA.



For the speedup for the double-double arithmetic, FMA instruction is very efficient.

