
Quadruple-precision BLAS using Bailey’s arithmetic

with FMA instruction :

Its performance and applications

1 Center for Computational Science and e-Systems, Japan Atomic Energy Agency
2 AICS, RIKEN

Susumu YAMADA1

Toshiyuki IMAMURA2, Takuya Ina1, Yasuhiro IDOMURA1,
Narimasa SASA1, Masahiko MACHIDA 1

June 2, 2017

iWAPT 2017

Outline

 Introduction of quadruple precision operations

Bailey’s double-double arithmetic

Quad-precision Eigenvalue solver using Quad-precision BLAS+FMA

Conclusions

Performance tuning for Quad-precision BLAS+FMA

 Speedup for Bailey’s double-double arithmetic by FMA instruction

Necessity of quad-precision operations

One of the strategies to avoid the precision issue is to use

quad-precision values.

• Nowadays, we can execute ultra-huge-scale simulations on
ultra-large parallel computers.

[1] S. Yamada, T. Imamura, T. Kano, and M. Machida, High-Performance Computing for
Exact Numerical Approaches to Quantum Many-Body Problems on the Earth Simulator,
Proc. of SC06 (2006).

• Since the huge simulations require a great number of the
floating-point operations, there would be a possibility that the
rounding error accumulates so much until its result has little
validity.

• Actually, when we solved the eigenvalue problem for 375 000-
dimentional matrix using the direct method with the real(8)
values, the result has only a few digit of accuracy[1].

Two quad-precision formats

implement: easy

accuracy: about 32 decimal digits

speed: high (hardware implementation)

implement: very easy

accuracy: about 34 decimal digits

speed: very slow (software implementation)

double-double arithmetic (by D.H. Bailey)

Real(16) format

A quadrature-precision value is implemented
using a pair of double-precision values.

Performance comparison with Real(16) format
and Bailey’s arithmetic

E
la

p
se

d
ti

m
e

(s
ec

)

The number of threads

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

Real(16) format

Bailey’s double-double

arithmetic (no FMA)

N=51,200,000
AXPY (ax+y) on SGI ICE X

When the number of the threads is small, Bailey’s arithmetic is about 10 times faster than
real(16) format. When the number is 12, about 4 times faster.

10x

4x

BLAS （Basic Linear Algebra Subprograms)

Quadruple Precision BLAS

40 routines

We developed quad-precision BLAS using Bailey’s double-double arithmetic.

QPBLAS （Quadruple Precision Basic Linear Algebra Subprograms)

Quad-precision algorithm using Bailey’s arithmetic

Addition C=A+B using Bailey’s

double-double arithmetic

11 floating-point operations

Multiplication C=A＊B using Bailey’s

double-double arithmetic

アルゴリズムによる乗算 C=A＊B

24 floating-point operations

Bailey’s arithmetic using FMA instruction

a*x+b

For double precision values a, b, and x,

is calculated using 128-bit values and the result with a
64-bit value is obtained.

FMA instruction

The multiplication using FMA is realized
with only 10 floating-point operations.

Reduction of calculation time

Original method requires 24 floating-
point operations.

Replace the multiplication operations
in QPBLAS by the operations using
FMA instruction.

When we utilize the FAM instruction, we can realize the Bailey’s multiplication
with fewer operations.

The decrease is about 60%.

10 floating-point operations

Number of instructions of DD arithmetic
When we utilize a compiler optimization, the multiply-accumulation operation is
executed by one instruction.

No FMA: 18 instructions

6 multiply-accumulation operations

With FMA: 7 instructions

3 multiply-accumulation operations

Quad-precision multiplication using
Bailey’s arithmetic without FMA instruction

Quad-precision multiplication using
Bailey’s arithmetic with FMA instruction

 ..,max(sec) timeelapsed lTheoretica commcal

THREADS*#INST#Clock*#

))FMA(7or FMA) (no 18(*mul#11*add#
.

cal

(byte/sec)bandwidth Memory

(byte) data ed transferrofnumber The
. comm

Theoretical elapsed time

Calculation time

Time for data transferred from memory

#add : the number of quad-precision additions

#mul : the number of quad-precision multiplications

#Clock : the clock rate of the processor

#INST : the number of the executable instructions per cycle per clock

#THREADS : the number of the threads

Details of computers

SGI ICE X

CPU
Intel Xeon E5-2680 v3
(2.5GHz, 30MB cache)

Number of cores
per CPU

12

Number of CPUs
per node

2 CPUs

Memory per node 64GB

FUJITSU FX10

Network Infini Band

Network
Bandwidth

6.8GB/s

SPARC64TMIXfx
(1.848GHz, 12MB L2 cache)

16

1 CPU

32GB

Torus network (Tofu)

5GB/s

Complier Intel compiler Fujitsu compiler

Memory bandwidth 85GB/s68GB/s

(Japan Atomic Energy Agency) (The University of Tokyo)

Number of executable instructions
per cycle per clock 8 4(#INST)

Elapsed time of Level 1 (small size)
AXPY

• Since all data are stored on cache, the memory bandwidth does not influence the elapsed
time. Therefore, as the number of the threads increases, the elapsed time reduces.

Theoretical elapsed time

QPAXPY (no FMA)

QPAXPY (FMA)

QPAXPY (FMA)

QPAXPY (no FMA)

Real elapsed time

0.00001

0.0001

0.001

1 2 3 4 5 6 7 8 9 10 11 12

E
la

p
se

d
ti

m
e

(s
ec

)

The number of threads

N=200,000
(All data are stored on cache)

0.00001

0.0001

0.001

0.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Theoretical elapsed time

QPAXPY (no FMA)

QPAXPY (FMA)

QPAXPY (FMA)

QPAXPY (no FMA)

Real elapsed time

E
la

p
se

d
ti

m
e

(s
ec

)
The number of threads

• When FMA instruction is utilized, the elapsed time decreases by about 45% on ICE X and
25% on FX10.

• The ratio of the theoretical elapsed time to the real one is 50% on ICE X and 70% on FX10.

ICE X FX10

Elapsed time of Level 1 (large size)

AXPY N=51,200,000

E
la

p
se

d
ti

m
e

(s
ec

)
The number of threads

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Theoretical elapsed time

QPAXPY (no FMA)

QPAXPY (FMA)

QPAXPY (FMA)

QPAXPY (no FMA)

Real elapsed time

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12

Theoretical elapsed time

QPAXPY (no FMA)

DAXPY

QPAXPY (FMA)

QPAXPY (FMA)

QPAXPY (no FMA)

Real elapsed time

E
la

p
se

d
ti

m
e

(s
ec

)

The number of threads

• On small threads, the routne+FMA is faster than the original one.

• On many threads, whether FMA is utilized or not, the elapsed times are almost the same.
• At this time, the elapsed time of quad-precision routine is about twice as that of the double-

precision one.

ICE X FX10

The elapsed time depends on the number of the transferred data from memory.

Elapsed time of Level 2

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12

Theoretical elapsed time

QPGEMV (no FMA)

QPGEMV (FMA)

QPGEMV (FMA)

QPGEMV (no FMA)

Real elapsed time

E
la

p
se

d
ti

m
e

(s
ec

)

The number of threads

N=M=10,000
GEMV (Level 2)

0.01

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
E

la
p

se
d

ti
m

e
(s

ec
)

The number of threads

Theoretical elapsed time

QPGEMV (no FMA)

QPGEMV (FMA)

QPGEMV (FMA)

QPGEMV (no FMA)

Real elapsed time

ICE X achieves speedup up to 9 threads.
Fx10 achieves speedup using 16 threads.

The trend of the speedup is almost
the same as the theoretical ones.

When the number of threads becomes larger, the performance is limited by the
memory bandwidth.

ICE X FX10

Elapsed time of Level3

N=M=1,000

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
E

la
p

se
d

ti
m

e
(s

ec
)

Theoretical elapsed time

QPGEMM (no FMA)

QPGEMM (FMA)

QPGEMM (FMA)

QPGEMM (no FMA)

Real elapsed time

GEMM (Level3)

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10 11 12

Theoretical elapsed time

QPGEMM (no FMA)

QPGEMM (FMA)

QPGEMM (FMA)

QPGEMM (no FMA)

Real elapsed time

E
la

p
se

d
ti

m
e

(s
ec

)

The number of threads The number of threads

• When using FMA instruction, we obtain 20～30% speedup with any number of threads.

• The ratio of floating-point operations to data movement from memory is sufficiently
large for Level 3 routine.

Elapsed time for the Level 3 routine depends on FLOPS, not on the memory bandwidth.

ICE X FX10

Performance and memory throughput on FX10

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

QPAXPY

QPGEMV

QPGEMM

P
er

fo
rm

an
ce

(G

F
L

O
P

S
)

The number of threads

QPAXPY

QPGEMV

QPGEMM

M
em

o
ry

 t
h

ro
u

g
h

p
u

t
 (

G
B

/s
ec

)
The number of threads

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The memory throughput of Level 1 routine QPAXPY is saturated with 5 threads.

The performance increase up to 5 threads.

The throughput for Level 2 routine is almost saturated with 16 threads.

When the number of the threads increases for Level 3 , the throughput hardly changed.

The performance is almost saturated with 16 threads.

The routine has a possibility to achieve a high performance on a many-core processor.

Using FMA

Using FMA

Overview of QPEigenK

EigenK

BLAS
LAPACK
ScaLAPACK
MPI

QPEigenK

QPBLAS
QPLAPACK
QPScaLAPACK
QPMPI

QPBLAS+FMA

We developed the quad-precision eigenvalue solver QPEigenK based on double-

precision direct solver EigenK with the double-double (DD) arithmetic. We

extended the necessary routines in BLAS, LAPACK, ScaLAPACK, and MPI into

quad-precision ones with DD arithmetic.

Performance test for QPEigenK with QPBLAS or QPBLAS+FMA.

Parallelization : Flat MPI
Matrix size : 16,000

QPEigenK on ICEX

QPBLAS +FMA ratio QPBLAS +FMA ratio QPBLAS +FMA ratio QPBLAS +FMA ratio
Trd 673.2804 634.8092 0.94 348.4344 328.4325 0.94 186.9448 176.9431 0.95 103.9656 98.85356 0.95
D&C 161.3854 118.9403 0.74 89.03776 64.72398 0.73 48.00655 36.2905 0.76 27.36227 21.63406 0.79
BTr 1148.437 1045.68 0.91 571.3249 517.7198 0.91 285.6589 256.2367 0.90 145.9618 128.2119 0.88

Totel 1983.103 1799.429 0.91 1008.797 910.8763 0.90 520.6103 469.4703 0.90 277.2896 248.6995 0.90

24 cores 48 cores 96 cores 192 cores

100

1000

10000

24 48 96 192

QPEigenK

QPEigenK+FMA

The Number of cores

El
ap

se
d

 t
im

e
(s

ec
)

10% speedup
Performance of D&C improves most, when using
FMA instruction. But the ratio of D&C is small.

QPEigenK on FX10

QPBLAS +FMA ratio QPBLAS +FMA ratio QPBLAS +FMA ratio
Trd 1140.561 1113.705 0.98 586.678 567.0671 0.97 332.7886 326.2054 0.98
D&C 248.6933 222.5274 0.89 145.4987 131.6127 0.90 78.28661 71.75055 0.92
BTr 2689.077 1902.329 0.71 1394.92 997.367 0.71 713.5748 523.217 0.73
Totel 4078.332 3238.561 0.79 2127.097 1696.047 0.80 1124.65 921.173 0.82

32 cores 64 cores 128 cores

100

1000

10000

32 64 128

QPEigenK

QPEigenK+FMA

The Number of cores

El
ap

se
d

 t
im

e
(s

ec
)

Total:20% speedup

The decrease in the elapsed time of back-transformation is about 30%.

Performance improvement by tuning

QPBLAS and QPBLAS+FMA are programed without special tunings.

An appropriate tuning has a possibility to improve their performance.

In order to examine the efficiency of loop unrolling for QPBLAS+FMA,
we unroll the loops of quad-precision GEMV manually and evaluate
the performance.

Unrolling strategy for QPGEMV

#pragma omp parallel for

for (j=0, j<M, i++){

y[j]=0.0;

}

#pragma omp parallel for

{

for (i=0,i<N,j++) {/* unrolling */

x[i]=alpha*x[i]; /* SIMD */

}

#pragma omp parallel private (work,j)

for (j=0,j<M,j++){

work[j]=0.0;

}

#pragma omp for

for (i=0,i<N,i++){

for (j=0,j<M,j++){ /* unrolling */

work[j]=work[j]+A[i][j]*x[i]; /* SIMD */

}

}

#pragma omp critical

for (j=0,j<M,i++){

y[j]=y[j]+work[j]; /* SIMD */

}

}

All calculations are executed with
quad-precision using DD arithmetic.

Reduction operation of OpenMP is
not applicable for Bailey’s arithmetic.

Performance improvement by loop unrolling on ICE X
S

p
ee

d
u

p
ra

ti
o

Loop unrolling factor

0.9

0.95

1

1.05

1.1

1.15

1 2 3 4 5 6 7 8

Matrix size
1000
2000
5000

10000

0.9

0.95

1

1.05

1.1

1.15

1 2 3 4 5 6 7 8

S
p

ee
d

u
p

ra
ti

o

Loop unrolling factor

Matrix size
1000
2000
5000

10000

0.95

1

1.05

1.1

1.15

1 2 3 4 5 6 7 8

S
p

ee
d
u

p
ra

ti
o

Loop unrolling factor

Matrix size
1000
2000
5000

10000

The number of threads=1 The number of threads=6

The number of threads=12 • When the matrix size is 1000, all date can
be stored on cache. Therefore, speed up
is obtained by unrolling.

• For other matrix size cases, the unrolling
realized speedup up to 6 threads.

• When the number is 12, the performance
depends on the memory bandwidth except
for 1000-dimensional case. Therefore,
unrolling has little effect for speedup.

Performance improvement by loop unrolling on FX10
S

p
ee

d
u

p
ra

ti
o

Loop unrolling factor

Matrix size
1000
2000
5000

10000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8

S
p

ee
d

u
p

ra
ti

o

Loop unrolling factor

Matrix size
1000
2000
5000

10000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6 7 8

S
p

ee
d
u

p
ra

ti
o

Loop unrolling factor

Matrix size
1000
2000
5000

10000

The number of threads=1 The number of threads=8

The number of threads=16

• For large matrix, we can obtain
speedup by unrolling.

• In general, unrolling gave bad effect
for speedup.

Performance improvement by loop unrolling

In this case, we unrolled the Level 2 routine.

• CPU architecture
• Loop unrolling factor
• The number of threads
• Matrix size

Speed up

• Two-level nested loop

• Unrolled only Inner loop

When we unroll the outer loop, we have a possibility to
obtain more speedup.

Level 3 routines

The combination of the loop unrolling for each loop is complicated.

It is difficult to find the optimal unrolling factor.
Automatic performance tuning
is the most practical strategy.

Three-level nested loop

Conclusions

We developed the quadrature precision BLAS (QPBLAS) using FMA instruction.

QPBLAS with FMA is basically faster than the original QPBLAS. However, the
number of the threads is large, their performances are the almost same for
some Level 1 and level 2 routines.

For the quadrature precision eigenvalue solver (QPEigenK), about 10% (ICEX) or
20% (FX10) speedup can be obtained by only replacing the original QPBLAS to
QPBLAS+FMA.

QPBLAS+FMA has a possibility of speedup using loop unrolling. But, it is
difficult to find the optimal unrolling factor.

Auto performance tuning is the most practical strategy to find the optimal value.

For the speedup for the double-double arithmetic, FMA instruction is very efficient.

