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Background

• Fine grained tasks results in fine grained communication pattern
• Efficient communication

• Latency
• Bandwidth
• Overheads associated with creating and sending messages

• What can be done ?
• Reduction of overheads
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Message Coalescing to Reduce Overheads

• Message coalescing is a technique that is useful for reducing overheads
• Combine small messages into large ones
• Effectively send the same amount of data while reducing per message overheads
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Approaches to Coalescing

• Manual coalescing
• High effort
• Impractical for larger projects

• Runtime system provided coalescing
• HPX, AM++ / Active Pebbles, Charm++

• Issues:
• How many messages to coalesce?
• Do different applications need different parameters?
• How do you determine the coalescing parameters?

• Solution: Intelligent Adaptive coalescing approach that dynamically varies its
parameters depending upon application behavior.
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Existing Solutions

• Charm++ exhibits basic adaptive approach for message coalescing
• Application is run automatically with different coalescing parameters each iteration
• Possible improvements:

• Allow for varying coalescing parameters mid iteration based on the phase of the
application

• General adaptive framework that does not require iterative steps or predictable pattern
of communication.
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Towards Advanced Message Coalescing

• For Advanced general adaptive coalescing framework :
• Implement message coalescing in HPX
• Identification of metrics and runtime characteristics pertaining to fine grained
communication overheads

• Utilization of identified metrics and runtime characteristics for adaptive tuning of
coalescing parameters.
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The HPX Runtime System

• Asynchronous Task based distributed runtime system written mostly in C++
• HPX application can run on both a single machine as well as a cluster with
thousands of nodes

• Exposes a concurrency and parallelism API consistent with the ISO C++ standard
• Real time performance measurement capabilities
• Runtime adaptive capabilities
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HPX Application
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Figure 1: Architecture of HPX

The HPX architecture consisting of AGAS for addressing any HPX object globally , LCOs for
synchronization of tasks , Threading Subsystem for employing lightweight tasks on OS
threads , Parcel Subsystem for executing tasks remotely, Performance counter framework
for instrumentation and debugging purpose and APEX for runtime adaptive capabilities.
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The HPX Parcel

• A form of Active message.
• Created when a method, called action in HPX terminology is called remotely.
• Goes though serialization process which converts it into stream of bytes and is sent
over the wire

• HPX presently supports : TCP/IP, MPI and IB-Verbs protocols for remote sends
• Reconstructed at the receiving end and placed in scheduler queue for execution.

Destination Address Action Arguments Continuations

Figure 2: Structure of a HPX Parcel. A parcel has four components: the destination address; the
action, which is the method/function to execute at the destination; the arguments for the function;
and optional continuations.
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Parcel Coalescing
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Figure 3: A diagrammatic representation of message coalescing. Individual active messages are
grouped together to form a large message at the sending end which is reconstructed into the
original individual entities at the receiving end. 9



Parcel Coalescing in HPX

• Designed around two parameters
• Queue length : the number of parcels to coalesce in a single send
• Wait time : time to wait in microseconds for the queue to be full before flushing the
queue

• Wait time helps avoid deadlocks
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Network Performance Metrics

• Metrics for measuring network overhead are necessary for achieving our goal of
adaptive message coalescing.

• We define overhead as the time spent processing information to be communicated
across the network.
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Task Duration

We looked at the overall time spent on executing each HPX-thread or tasks including the
overhead. We define task duration using the following equation:

td =
∑

tfunc (1)

where
∑
tfunc is the total time spent by the HPX scheduler executing each HPX thread.
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Task Overhead

We then looked at the average time spent on thread management for each HPX-thread or
tasks. We calculate task overhead using the following equation:

to =
∑
tfunc −

∑
texec

nt
(2)

where
∑
texec is the time spend by the HPX scheduler doing useful work and

∑
tfunc is the

task duration as defined in Equation 1 and nt is the number of executed HPX threads.
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Observations

• We observed a positive correlation between task overhead and overall execution
time of our test applications for various coalescing parameters.

• Aǒter establishing that task overhead has a positive correlation with the overall
execution time, we separated the network related overhead from other overheads.

• HPX performs network related tasks such as packaging a parcel into a message,
serialization, handshaking and locality resolution in the form of background work.
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Background Work Duration

We define total time spent doing background work as the background work duration and
it is obtained using the following equation:

tbd =
∑

tbackground−work (3)
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Network Overhead

The network overhead count is the ratio of thread background work duration to task
duration. Network Overhead is shown in Eq. 4.

noh =
∑
tbackground−work∑

tfunc
(4)

Here,
∑
tbackground−work is the total time spent performing network related work and∑

tfunc is the total time to reach the completion of each HPX thread.

Hence, Network Overhead gives us the fraction of overall time spent on performing
network related work.
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Testing the Network Overhead metric

• We test for correlation between our Network Overhead metric and overall execution
time of our test applications.

• Experimental Testbed
• Marvin Thin Compute Nodes of ROSTAM Cluster
• 2x Intel Xeon E5-2450 CPU 16 Cores total
• 48GB 1333 MHZ DDR3 Memory
• HPX v 1.0 , GCC 6.3 , IMPI 2017.2.174
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Testing the Network Overhead metric

• We use two test applications:
• A Toy Example
• The Parquet Application
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Toy Application Example

Figure 4: Toy Application 19



Definition

Experiments on the Toy application was performed on two Nodes where each node sent a
million messages to each other.
We define the process of sending a million message as a phase as shown in annotation 2
in Figure 4.
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Toy Application Execution Time per Phase
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Figure 5: Time to reach the completion of a particular phase in the toy application for various
values of number of parcels to coalesce in a single message with a wait time of 4000µs.
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Toy Application Network Overhead vs Time Per Phase
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Figure 6: Scatter Plot of the average network overhead per phase vs average execution time per
phase for the toy application. Each dot represents a set of parcel coalescing parameters. Average
overhead is the average for four phases. A Pearson’s correlation coefficient of 0.97 indicates a
strong positive correlation between network overhead and runtime.

22



Observations

• Fastest time per iteration seen with largest value of number of parcels to coalesce.
• Lack of dependency with any other communication or computation

• Does not reflect the behavior of a real application.
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The Parquet Application

• A complex physics simulation
• Requires use of many rank-three tensors
• The linear dimension (Nc) of the simulation controls the tensor size
• Throughout the simulation, large number of messages are sent between nodes
• The rotation phase sends 8 ∗ N2c parcels containing Nc elements
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Parquet Time to reach a particular iteration
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Figure 7: Time to reach the completion of different iterations in the parquet application for various
numbers of parcels coalesced in a single message with a wait time of 4000µs. Each color indicates
a different iteration. 25



Parquet Execution Time vs Network Overhead
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Figure 8: Scatter Plot of Average Network Overhead Vs Average time per iteration for the Parquet
Application. Each dot represents a set of parcel coalescing parameters. A Pearson’s correlation
coefficient of 0.92 was calculated indicating a strong positive correlation. 26



Parquet Execution Time
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Figure 9: Average time per iteration for various coalescing parameters.
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Parquet Network Overhead
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Figure 10: Average Network Overhead per iteration for various coalescing parameters.
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Side by Side for Visual Correlation
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Figure 11: Average time per iteration and average Network Overhead per iteration for various
coalescing parameters.
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Change Coalescing Parameters each Phase
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Figure 12: Network overhead for various values of number of parcels to coalesce in a single
message each phase with a wait time of 2000µs for two different runs of the toy application.
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Conclusions

• Sub-optimal parameter selection results in drastic performance loss.
• Non-availability of methods other than brute force to “guess” coalescing parameters
signals need for adaptive methods.

• Metrics identified in this research showed strong positive correlation with execution
time for two different applications.

• Initial results hints towards the possibility of being able to use our metrics for
adaptive tuning of parcel coalescing.
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