
Methodology for Adaptive Active Message Coalescing in Task
Based Runtime Systems

Bibek Wagle, Samuel Keller, Adrian Serio and Hartmut Kaiser
Louisiana State University
May 25, 2018

iWAPT 2018



Background

• Fine grained tasks results in fine grained communication pattern
• Efficient communication

• Latency
• Bandwidth
• Overheads associated with creating and sending messages

• What can be done ?
• Reduction of overheads

1



Message Coalescing to Reduce Overheads

• Message coalescing is a technique that is useful for reducing overheads
• Combine small messages into large ones
• Effectively send the same amount of data while reducing per message overheads

2



Approaches to Coalescing

• Manual coalescing
• High effort
• Impractical for larger projects

• Runtime system provided coalescing
• HPX, AM++ / Active Pebbles, Charm++

• Issues:
• How many messages to coalesce?
• Do different applications need different parameters?
• How do you determine the coalescing parameters?

• Solution: Intelligent Adaptive coalescing approach that dynamically varies its
parameters depending upon application behavior.

3



Existing Solutions

• Charm++ exhibits basic adaptive approach for message coalescing
• Application is run automatically with different coalescing parameters each iteration
• Possible improvements:

• Allow for varying coalescing parameters mid iteration based on the phase of the
application

• General adaptive framework that does not require iterative steps or predictable pattern
of communication.

4



Towards Advanced Message Coalescing

• For Advanced general adaptive coalescing framework :
• Implement message coalescing in HPX
• Identification of metrics and runtime characteristics pertaining to fine grained
communication overheads

• Utilization of identified metrics and runtime characteristics for adaptive tuning of
coalescing parameters.

5



The HPX Runtime System

• Asynchronous Task based distributed runtime system written mostly in C++
• HPX application can run on both a single machine as well as a cluster with
thousands of nodes

• Exposes a concurrency and parallelism API consistent with the ISO C++ standard
• Real time performance measurement capabilities
• Runtime adaptive capabilities

6



HPX Application

Threading Subsystem
Active Global Address 

Space (AGAS)

Parcel Subsystem
Local Control Objects 

(LCOs)

Operating System

Performance 
Counter 

Framework

A
P

E
X

 (
 A

ut
on

om
ic

 P
er

fo
rm

an
ce

 E
nv

iro
nm

en
t f

or
 e

X
as

ca
le

) 
P

ol
ic

y 
E

ng
in

e

Figure 1: Architecture of HPX

The HPX architecture consisting of AGAS for addressing any HPX object globally , LCOs for
synchronization of tasks , Threading Subsystem for employing lightweight tasks on OS
threads , Parcel Subsystem for executing tasks remotely, Performance counter framework
for instrumentation and debugging purpose and APEX for runtime adaptive capabilities.

7



The HPX Parcel

• A form of Active message.
• Created when a method, called action in HPX terminology is called remotely.
• Goes though serialization process which converts it into stream of bytes and is sent
over the wire

• HPX presently supports : TCP/IP, MPI and IB-Verbs protocols for remote sends
• Reconstructed at the receiving end and placed in scheduler queue for execution.

Destination Address Action Arguments Continuations

Figure 2: Structure of a HPX Parcel. A parcel has four components: the destination address; the
action, which is the method/function to execute at the destination; the arguments for the function;
and optional continuations.

8



Parcel Coalescing

Parcel A Parcel B Parcel C Parcel D Parcel E Parcel F Parcel G

Coalesced Parcel

Coalesced Parcel

Network

Parcel A Parcel B Parcel C Parcel D Parcel E Parcel F Parcel G

Source

Destination

Figure 3: A diagrammatic representation of message coalescing. Individual active messages are
grouped together to form a large message at the sending end which is reconstructed into the
original individual entities at the receiving end. 9



Parcel Coalescing in HPX

• Designed around two parameters
• Queue length : the number of parcels to coalesce in a single send
• Wait time : time to wait in microseconds for the queue to be full before flushing the
queue

• Wait time helps avoid deadlocks

10



Network Performance Metrics

• Metrics for measuring network overhead are necessary for achieving our goal of
adaptive message coalescing.

• We define overhead as the time spent processing information to be communicated
across the network.

11



Task Duration

We looked at the overall time spent on executing each HPX-thread or tasks including the
overhead. We define task duration using the following equation:

td =
∑

tfunc (1)

where
∑
tfunc is the total time spent by the HPX scheduler executing each HPX thread.

12



Task Overhead

We then looked at the average time spent on thread management for each HPX-thread or
tasks. We calculate task overhead using the following equation:

to =
∑
tfunc −

∑
texec

nt
(2)

where
∑
texec is the time spend by the HPX scheduler doing useful work and

∑
tfunc is the

task duration as defined in Equation 1 and nt is the number of executed HPX threads.

13



Observations

• We observed a positive correlation between task overhead and overall execution
time of our test applications for various coalescing parameters.

• Aǒter establishing that task overhead has a positive correlation with the overall
execution time, we separated the network related overhead from other overheads.

• HPX performs network related tasks such as packaging a parcel into a message,
serialization, handshaking and locality resolution in the form of background work.

14



Background Work Duration

We define total time spent doing background work as the background work duration and
it is obtained using the following equation:

tbd =
∑

tbackground−work (3)

15



Network Overhead

The network overhead count is the ratio of thread background work duration to task
duration. Network Overhead is shown in Eq. 4.

noh =
∑
tbackground−work∑

tfunc
(4)

Here,
∑
tbackground−work is the total time spent performing network related work and∑

tfunc is the total time to reach the completion of each HPX thread.

Hence, Network Overhead gives us the fraction of overall time spent on performing
network related work.

16



Testing the Network Overhead metric

• We test for correlation between our Network Overhead metric and overall execution
time of our test applications.

• Experimental Testbed
• Marvin Thin Compute Nodes of ROSTAM Cluster
• 2x Intel Xeon E5-2450 CPU 16 Cores total
• 48GB 1333 MHZ DDR3 Memory
• HPX v 1.0 , GCC 6.3 , IMPI 2017.2.174

17



Testing the Network Overhead metric

• We use two test applications:
• A Toy Example
• The Parquet Application

18



Toy Application Example

Figure 4: Toy Application 19



Definition

Experiments on the Toy application was performed on two Nodes where each node sent a
million messages to each other.
We define the process of sending a million message as a phase as shown in annotation 2
in Figure 4.

20



Toy Application Execution Time per Phase

1 2 4 8 16 32 64 128 256
Number of parcels to coalesce

20

40

60

80

100

120

140

Ti
m

e 
(s

)

Time to reach the completion of a particular Phase
Phase 1
Phase 2
Phase 3
Phase 4

Figure 5: Time to reach the completion of a particular phase in the toy application for various
values of number of parcels to coalesce in a single message with a wait time of 4000µs.

21



Toy Application Network Overhead vs Time Per Phase

10 15 20 25 30 35
Average time(s)

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Av
er

ag
e 

Ne
tw

or
k 

Ov
er

he
ad

 (%
)

Time vs Network Overhead

Figure 6: Scatter Plot of the average network overhead per phase vs average execution time per
phase for the toy application. Each dot represents a set of parcel coalescing parameters. Average
overhead is the average for four phases. A Pearson’s correlation coefficient of 0.97 indicates a
strong positive correlation between network overhead and runtime.

22



Observations

• Fastest time per iteration seen with largest value of number of parcels to coalesce.
• Lack of dependency with any other communication or computation

• Does not reflect the behavior of a real application.

23



The Parquet Application

• A complex physics simulation
• Requires use of many rank-three tensors
• The linear dimension (Nc) of the simulation controls the tensor size
• Throughout the simulation, large number of messages are sent between nodes
• The rotation phase sends 8 ∗ N2c parcels containing Nc elements

24



Parquet Time to reach a particular iteration

1 2 4 8 16 32 64 128 256
Number of parcels to coalesce

50

100

150

200

250

300

350

400

450

Ti
m

e 
(s

)

Time to reach the completion of a particular iteration
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

Figure 7: Time to reach the completion of different iterations in the parquet application for various
numbers of parcels coalesced in a single message with a wait time of 4000µs. Each color indicates
a different iteration. 25



Parquet Execution Time vs Network Overhead

60 70 80 90 100
Average time per iteration(s)

30

35

40

45

Av
er

ag
e 

Ne
tw

or
k 

Ov
er

he
ad

 (%
)

Time vs Network Overhead

Figure 8: Scatter Plot of Average Network Overhead Vs Average time per iteration for the Parquet
Application. Each dot represents a set of parcel coalescing parameters. A Pearson’s correlation
coefficient of 0.92 was calculated indicating a strong positive correlation. 26



Parquet Execution Time

1 2 4 8 16 32 64 12
8

25
6

Number of parcels to coalesce

1

1000

2000

3000

4000

5000

 W
ai

t t
im

e 
(

s)

Time per Iteration for various coalescing parameters

55
60
65
70
75
80
85
90
95

Av
er

ag
e 

Ti
m

e 
Pe

r I
te

ra
tio

n 
(s

)

Figure 9: Average time per iteration for various coalescing parameters.

27



Parquet Network Overhead

1 2 4 8 16 32 64 12
8

25
6

Number of parcels to coalesce

1

1000

2000

3000

4000

5000

 W
ai

t t
im

e 
(

s)

Network Overhead per Iteration for various 
 coalescing parameters

30
32
34
36
38
40
42
44
46

Av
er

ag
e 

Ne
tw

or
k 

Ov
er

he
ad

 (%
)

Figure 10: Average Network Overhead per iteration for various coalescing parameters.

28



Side by Side for Visual Correlation

1 2 4 8 16 32 64 12
8

25
6

Number of parcels to coalesce

1

1000

2000

3000

4000

5000

 W
ai

t t
im

e 
(

s)

Time per Iteration for various coalescing parameters

55
60
65
70
75
80
85
90
95

Av
er

ag
e 

Ti
m

e 
Pe

r I
te

ra
tio

n 
(s

)

1 2 4 8 16 32 64 12
8

25
6

Number of parcels to coalesce

1

1000

2000

3000

4000

5000

 W
ai

t t
im

e 
(

s)

Network Overhead per Iteration for various 
 coalescing parameters

30
32
34
36
38
40
42
44
46

Av
er

ag
e 

Ne
tw

or
k 

Ov
er

he
ad

 (%
)

Figure 11: Average time per iteration and average Network Overhead per iteration for various
coalescing parameters.

29



Change Coalescing Parameters each Phase

10 20 30 40 50 60
Elapsed Time (s)

40

42

44

46

48

50

Ne
tw

or
k 

Ov
er

he
ad

 (%
)

128

2

16

1

1

2

16

128

Result of parameters changed at runtime

nparcels = 128, 2, 16 and 1
nparcels = 1, 2, 16 and 128

Figure 12: Network overhead for various values of number of parcels to coalesce in a single
message each phase with a wait time of 2000µs for two different runs of the toy application.

30



Conclusions

• Sub-optimal parameter selection results in drastic performance loss.
• Non-availability of methods other than brute force to “guess” coalescing parameters
signals need for adaptive methods.

• Metrics identified in this research showed strong positive correlation with execution
time for two different applications.

• Initial results hints towards the possibility of being able to use our metrics for
adaptive tuning of parcel coalescing.

31



Support

This work was partly funded by the NSF EPSCoR LA-SiGMA project under award
#EPS-1003897 ,the NSF STORM project under the award #ACI-1339782 and NSF Phylanx
project award #1737785. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

32



Questions?

32


