THREADED ACCURATE MATRIX-MATRIX MULTIPLICATIONS WITH SPARSE MATRIX-VECTOR MULTIPLICATIONS

Shuntaro Ichimura⁽¹⁾, <u>Takahiro Katagiri</u>⁽²⁾, Katsuhisa Ozaki⁽³⁾, Takeshi Ogita⁽⁴⁾, Toru Nagai⁽²⁾

- (1) Graduate School of Information Science, Nagoya University
- (2) Information Technology Center, Nagoya University
- (3) College of System Engineering and Science, Shibaura Institute of Technology
- (4) Division of Mathematical Science, Tokyo Woman's Christian University

The Thirteenth International Workshop on Automatic Performance Tuning (iWAPT2018), May 25, 2018, JW Marriott Parq Vancouver, Vancouver, British Columbia CANADA, AT Techniques, 10:30 - 12:30, May 25, 2018

iWAPT2018

Outline

- Background
- Accurate precision MMM (Ozaki Method)
- Parallel Implementation for Multi-core CPUs and Its Evaluation
- Conclusion

iWAPT2018

Outline

- Background
- Accurate precision MMM (Ozaki Method)
- Parallel Implementation for Multi-core CPUs and Its Evaluation
- Conclusion

WAPT2018

Background

- Libraries for basic linear algebra operations, such as BLAS (Basic Linear Algebra Subprograms), are one of crucial tools for numerical computations.
- Generally speaking, accuracy assurance for numerical linear algebra libraries, such as LAPACK, is still under research.
- On the other hand, study on accuracy assurance for BLAS operations is performing by Prof. Oishi group (Waseda University), including Prof. Ogita, and Prof. Ozaki.
- We forces on the research, in particular, high precision matrix-matrix multiplication (MMM).
- Here after, we call the method Ozaki Method.

iWAPT2018

Outline

- Background
- Accurate precision MMM (Ozaki Method)
- Parallel Implementation for Multi-core CPUs and Its Evaluation
- Conclusion

WAPT2018

Overview of High Precision Matrix-Matrix Multiplications (MMM) Algorithm (Ozaki Method †1) (1/3)

A Matrix-Matrix Multiplications A B

Error-Free Transformation

$$C=AB=\sum_{q=1}^{r}C_{q}$$

$$C_q \in F^{m \times p}$$

Summation of Decomposed Matrices with Floating Point Operations

F: A Set of Floating Point Numbers.

A: A Matrix with <math>m * n.

B: A Matrix with <math>n * p.

C: A * B

†1 K. Ozaki, T. Ogita, S. Oishi, S.M. Rump: Error-Free Transformation of Matrix Multiplication by Using Fast Routines of Matrix Multiplication and its Applications, Numerical Algorithms, Vol. 59, No.1, pp.95-118, 2012.

Other Part of The Error Free Transformation in Ozaki Method

Part of MMMs

 n_A : The number of decomposed matrices from matrix A.

 n_B : The number of decomposed matrices from matrix B.

 A High Precision Summation:

$$AB = \sum_{k=100}^{n_A \cdot n_B} EF^{(k)}$$
 Faithful Algorithm

Faithful Algorithm[†]

Round-off the true answer to the nearest left or right floating number.

Figure 1: faithful rounding

Accuracy Assured

†Siegfried M. Rump, Takeshi Ogita, Shin'ichi Oishi: *Accurate Floating-Point Summation Part I: faithful Rounding*, SIAM Journal on Scientific Computing, **31**:1 (2008), 189-224.

Characteristics of Ozaki Method

- Ozaki method can establish high precision for MMM with extremely dispersed elements.
- Computational complexity of Ozaki method depends on range of input elements.

(1) If dispersion of elements of matrix is large: Sparse matrix can be utilized after error free translation to reduce computational complexity.

(2) If dispersion of elements of matrix is small: Cannot reduce computational complexity. But, Conventional high performance implementations S dgemm) of dense MMM can be utilized.

Error-Free Transformation (1/3)

$$t_A = 2^{ceil(\log_2(\mu 1))} \tau$$

Take maximum elements of products in each column.

* ceil(): Compute minimum integer number WAPT2018

Error-Free Transformation (2/3)

 $T=[t_{A_1},t_{A_2},\ldots,t_{A_n}],$

where, $T_{ij} > A_{ij}$.

$$T = \left(\begin{array}{c|c} t_A & t_A & \dots & t_A \end{array} \right)$$

fl (*): A Floating Point Computation

$$A^{(1)} = fl((A+T) - T);$$

$$A^{(2)'} = fl(A - A^{(1)});$$

Maximum number of products in each column.

Extract values which exceed range of expression of products with respect to round-off error.

 $A^{(2)}'$

 $A^{(1)}$

iWAPT2018

13

Error-Free Transformation (3/3)

An image of decomposition (Error free transformation)

$$s = floor((\log_2(u^{-1}) - \log_2(n))/2)$$

[bit]

Ex.) If *double precision*, then it should take:

floor(
$$(53 - \log_2(n)/2)$$
 [bit],
And if matrix size is $n = 1024$, then
it should take floor $\left(\frac{53-10}{2}\right) = 21$ [bit].

floor: under rounding for the first digit of floating point number.

An Example

We take the following floating point numbers.

$$A = \begin{bmatrix} 2^{0} + 2^{-30} & 2^{-20} + 2^{-40} & 2^{-10} + 2^{-15} \\ 2^{-10} + 2^{-30} & 2^{-15} + 2^{-35} & 2^{1} + 2^{-15} \\ 2^{-5} + 2^{-25} & 2^{0} + 2^{-30} & 2^{5} + 2^{-30} \end{bmatrix}$$

$$B = \begin{bmatrix} 2^{0} + 2^{-30} & 2^{-35} + 2^{-60} & 2^{5} + 2^{-15} \\ 2^{-5} + 2^{-10} & 2^{-30} + 2^{-40} & 2^{-10} + 2^{-30} \\ 2^{-3} + 2^{-15} & 2^{-40} + 2^{-50} & 2^{-8} + 2^{-17} \end{bmatrix}$$

• Considering an inner product for 1^{st} row of A and 1^{st} column of B. We compute products of A(1,1) and B(1,1) as follows.

$$(2^{0}+2^{-30})(2^{0}+2^{-30}) = 2^{0}+2^{-29}+2^{-60}$$

A rounding error is occurred in the red part with 53-bit.

 Information over 53-bit is dropped in the other part as same as the above.

Error-free Transformations for A

We separate the matrix with error-free transformations:

•
$$A = \begin{bmatrix} 2^0 + 2^{-30} & 2^{-20} + 2^{-40} & 2^{-10} + 2^{-15} \\ 2^{-10} + 2^{-30} & 2^{-15} + 2^{-35} & 2^1 + 2^{-15} \\ 2^{-5} + 2^{-25} & 2^0 + 2^{-30} & 2^5 + 2^{-30} \end{bmatrix}$$

to the following two matrices.

•
$$A^{(1)} = \begin{bmatrix} 2^0 & 2^{-20} & 2^{-10} + 2^{-15} \\ 2^{-10} & 2^{-15} & 2^1 + 2^{-15} \\ 2^{-5} & 2^0 & 2^5 \end{bmatrix}$$

$$A^{(2)} = \begin{bmatrix} 2^{-30} & 2^{-40} & 0 \\ 2^{-30} & 2^{-35} & 0 \\ 2^{-25} & 2^{-30} & 2^{-30} \end{bmatrix}$$

Error-free Transformations for B

We separate with error-free transformations:

•
$$B = \begin{bmatrix} 2^0 + 2^{-30} & 2^{-35} + 2^{-60} & 2^5 + 2^{-15} \\ 2^{-5} + 2^{-10} & 2^{-30} + 2^{-40} & 2^{-10} + 2^{-30} \\ 2^{-3} + 2^{-15} & 2^{-40} + 2^{-50} & 2^{-8} + 2^{-17} \end{bmatrix}$$

to the following two matrices.

•
$$B^{(1)} = \begin{bmatrix} 2^0 & 2^{-35} & 2^5 + 2^{-15} \\ 2^{-5} + 2^{-10} & 2^{-30} + 2^{-40} & 2^{-10} \\ 2^{-3} + 2^{-15} & 2^{-40} + 2^{-50} & 2^{-8} + 2^{-17} \end{bmatrix}$$

$$B^{(2)} = \begin{bmatrix} 2^{-30} & 2^{-60} & 0 \\ 0 & 0 & 2^{-30} \\ 0 & 0 & 0 \end{bmatrix}$$

Multiplication with error-free translated matrices for $A^{(1)}$ and $B^{(1)}$

We consider the following MMM:

•
$$A^{(1)} = \begin{bmatrix} 2^0 & 2^{-20} & 2^{-10} + 2^{-15} \\ 2^{-10} & 2^{-15} & 2^1 + 2^{-15} \\ 2^{-5} & 2^0 & 2^5 \end{bmatrix}$$

•
$$B^{(1)} = \begin{bmatrix} 2^0 & 2^{-35} & 2^5 + 2^{-15} \\ 2^{-5} + 2^{-10} & 2^{-30} + 2^{-40} & 2^{-10} \\ 2^{-3} + 2^{-15} & 2^{-40} + 2^{-50} & 2^{-8} + 2^{-17} \end{bmatrix}$$

Products of the above MMM, such as products of the third row of $A^{(1)}$ and the first column of $B^{(1)}$ is:

$$2^{-5} * 2^{0} + 2^{0}(2^{-5} + 2^{-10}) + 2^{5}(2^{-3} + 2^{-15}) = 2^{2} + 2^{-4} + 2^{-9}$$
.

This is all inside 53-bit computations. Hence there is no rounding error.

Outline

- Background
- Accurate precision MMM (Ozaki Method)
- Parallel Implementation for Multi-core CPUs and Its Evaluation
- Conclusion

Strategy of Using Sparse Matrix for Our Implementation

Start

Error Free Transformation

If the sparsity is more than 90%?

dgemm

SpMV

High Precision Summation

YES

THREAD PARALLEL IMPLEMENTATIONS

Sparse Matrix Formats for SpMV (1/2)

• CRS Format

Scan non-zero elements for row-wise, and non-zero elements are stored.

$$A = \begin{pmatrix} a_1^1 & b_2^2 & c_3^3 & 0\\ 0 & 0 & 0 & d_4^4\\ e_1^5 & 0 & 0 & f_4^6\\ 0 & 0 & g_3^7 & 0 \end{pmatrix}$$

$$data = [a, b, c, d, e, f, g]$$

 $I(A) = [1, 4, 5, 7, 8]$
 $J(A) = [1,2,3,4,1,4,3]$

data: An array for store of non-zero elements.

I(A): An array for store of the first position of each row in array data.

J(A): An array for store of column numbers corresponding to elements of array data.

Sparse Matrix Formats for SpMV (2/2)

ELL Format

from left-side without zero elements.

• ELL Format Store non-zero elements from left-side without
$$A = \begin{pmatrix} a_1^1 & b_2^2 & c_3^3 & 0 \\ 0 & 0 & 0 & d_4^4 \\ e_1^5 & 0 & 0 & f_4^6 \\ 0 & 0 & g_3^7 & 0 \end{pmatrix}$$
 zero elements.

The column number is set to maximum number of columns of non-zero elements. If there is no non-zero elements, then "0" is patted.

$$data = \begin{bmatrix} \frac{a & b & c}{d & 0 & 0} \\ \frac{e}{e} & f & 0 \\ \frac{g}{0} & 0 & 0 \end{bmatrix} \quad indices = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 1 \\ 1 & 4 & 1 \\ 3 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} \text{Proposal method} \\ \text{is using ELL format} \\ \text{for Ozaki Method.} \end{array}$$

$$data = [a, b, c, d, 0, 0, e, f, 0, g, 0, 0]$$

 $num_col = 3$
 $J(A) = [1,2,3,4,0,0,1,4,0,3,0,0]$
APT2018

Thread-level Parallelization of SpMV in Ozaki Method

for (i = 0; i < n; i + +) { #pragma omp parallel for for (j = 0; j < n; j + +) { $(c_i)_j = \operatorname{Sp}(A)_j b_i$ }

1. Inner Parallelization

Thread-level parallelization inside SpMV.

2. Outer Parallelization

Thread-level parallelization in multiple calling level of SpMV.

(Using parallelism of columns of B)

3. Using Multiple Right-hand-sides

Dedicated inside thread-level parallelism of SpMV with multiple Right-Hand-Sides (RHS).

```
c_i = \operatorname{Sp}(A)b_i, (i = 1, ..., n)

c_i: i-th vector of Matrix C.

b_i: i-th vector of Matrix B.

\operatorname{Sp}(A): A sparse matrix from Matrix A.
```

```
(c_i)_j: j-th element of vector c_i.
Sp(A)_j: j-th vector of Sp(A).
```

Fig1. Inner Parallelized code with OpenMP

```
#pragma omp parallel for for (i = 0; i < n; i + +) { c_i = \operatorname{Sp}(A) b_i }
```

Fig2. Outer Parallelized code with OpenMP

```
#pragma omp parallel for
for (j=0; j<n; j++) {
for (i=0; i<n; i+=m) {
(c_i)_j = \operatorname{Sp}(A)_j B_{i:i+m-1}
}
```

 $B_{i:i+m-1}$: A Matrix with b_i , b_{i+1} , ..., b_{i+m-1}

Fig3. Paralleled Code with Multiple Righthand-sides with OpenMP

PERFORMANCE EVALUATION

Performance Evaluation

Fujitsu PRIMEHPC FX100 (FX100)@ITC, Nagoya U.

(FA100)@ITC, Nagoya O.							
CPU	SPARC64 XIfx, 2.2 GHz, 32 Cores (+2 Assistant Cores)						
Memory Amount	32 GB						
Cache Organization	L1: 64KB L2: 24MB						
Compiler	Fujitsu C/C++ Compiler Driver Version 2.0.0 P-id: T01776-01						
Compiler Options	Sparse Kernel Part: -Kfast –Kopenmp						
	The others: -O0 –Kopenmp						
Memory Performance	480 GB/s						

Test Matrices

- **1.** (Random) Elements of matrices *A* and *B* were generated with a pseudorandom generator from the standard uniform distribution on the open interval (0, 1).
- **2.** (Random * Inverse) Elements of matrix A were generated with a pseudo-random generator from the standard uniform distribution on the open interval (0, 1).
 - $B = A^{-1}$ using the dgetrf and dgetri routines in LAPACK.
- 3. (Sparse + Dispersed elements) Elements of matrices A and B were generated with a pseudo-random generator from the standard uniform distribution on the open interval (0, 1). Then, the elements were selected with a specified ratio (sp_num % to total number of elements), and we added the selected values with pow(10, rand()% Φ).
- **4.** (Sparse + Dispersed elements * Inverse) Elements of matrix A were generated with 1 for the first row, and then they are added with a pseudo-random generator from the standard uniform distribution on the open interval (0, 1).
 - $B = A^{-1}$ using the dgetrf and dgetri routines in LAPACK.
 - * Φ determines dispersion of elements of matrix.

Condition of Experiments

Conventional Ozaki

Implementation

Implementation Methods

1	inplementation Methods	the state of the s	Implementation		
	Details Conventional B	Notation			
1	Simple dgemm routine call. This is not accurate MMM.	simple dgemm			
2	dgemm implementation in the Ozaki method. Thread parallelization is	Ozaki (dgemm) 💉			
	performed inside dgemm.				
3	Sparse matrix is generated when its sparsity is more than 90%, and SpMV is	Ozaki			
	performed with CRS format. The parallel implementation is inner parallelization.	(CRS, Inner)			
4	The implementation is the same as that in 3. The parallel implementation is	Ozaki			
	outer parallelization.	(CRS, Outer)	C		
5	The implementation is the same as that in 3. The parallel implementation is	Ozaki	J		
	inner parallelization with multiple vectors of RHS.	(CRS, Multi RHS)			
6	The implementation is the same as that in 3. The parallel implementation is	Ozaki			
	inner parallelization with multiple vectors of RHS and the blocking factor is 100.	(CRS, Multi RHS(100))			
7	Sparse matrix is generated when its sparsity is more than 90%, and SpMV is	Ozaki			
	performed with ELL format. The parallel implementation is inner parallelization.	(ELL, Inner)			
8	The implementation is the same as that in 7. The parallel implementation is	Ozaki			
	outer parallelization.	(ELL, Outer)			
9	The implementation is the same as that in 7. The parallel implementation is	Ozaki			
	inner parallelization with multiple vectors of RHS.	(ELL, Multi RHS)			
10	The implementation is the same as that in 3. The parallel implementation is	Ozaki			
	inner parallelization with multiple vectors of RHS and the blocking factor is 100.	(FU Multi RHS(100))			
11	The implementation is with accurate sum for MMM (dot2 [10]). Only dense	Inner Products			

Condition of Experiments

- Matrix Sizes: N=500, and N=1000.
- Φ = 5. (a constant value.)
- Using 1 node. (32 threads)
- Result is verified with MPFR Library, which has binary 212 digits in this experiment (almost as same as quad double precision).
- Maximum relative error is calculated with:

$$\max_{1 \le i, j \le n} |C_{i,j}^* - C_{i,j}| / |C_{i,j}^*|,$$

 $C_{i,j}^*$ means elements of matrix with i —th row and j — th column.

RESULTS

NUMBER OF NON-ZERO ELEMENTS FOR ERROR-FREE TRANSFORMED MATRICES AND NUMBER OF SPARSE MATRICES

Number of Non-zero Elements for Error-free Transformed Matrices for A (N=1000)

Let a decomposed matrix of A be $A^{(i)}$.

(i = 1, 2, ..., p, where p is the number of decompositions for A.)

The yellow parts show sparse matrices after error free translation.

Test#	1							
	1		2		3		4	
A ⁽ⁱ⁾	Max	Min	Max	Min	Max	Min	Max	Min
$A^{(1)}$	1000	1000	1000	1000	1000	996	92	91
$A^{(2)}$	1000	998	1000	998	1000	998	91	90
$A^{(3)}$	86	34	87	40	1000	993	91	85
$A^{(4)}$	_	_	_	_	7	0	-	-

Number of non-zero elements for sparse matrix by error free transformation is small.

The number of non-zero elements per column is almost constant.

Computation efficiency is getting high by ELL.

EXECUTION SPEED AND COMPUTATION ACCURACY

Matrix 3

dgemm Ozaki(dgemm) ▲ Ozaki (CRS, inner) ×Ozaki (CRS,outer) ★ Ozaki (CRS,Multi RHS) Ozaki (CRS,Multi RHS(100)) + Ozaki (ELL, inner) Ozaki (ELL,outer) Ozaki (ELL,Multi RHS) Ozaki (ELL, Multi RHS(100)) High-precision inner product

Matrix 4

KERNEL SPEEDUPS BASED ON OZAKI (DGEMM)

based on Ozaki (dgemm) (N=1000) Matrix 1

based on Ozaki (dgemm) (N=1000) Matrix 2

Speedup

based on Ozaki (dgemm) (N=1000) Matrix 3

Speedup

based on Ozaki (dgemm) (N=1000) Matrix 4

BREAKDOWN OF EXECUTION (WHOLE)

iWAPT2018 43

Breakdown of Execution (Whole) Matrix 1 (N=1000)

Breakdown of Execution (Whole) Matrix 2 (N=1000)

Implementations

Breakdown of Execution (Whole)

Breakdown of Execution (Whole) Matrix 4 (N=1000)

Time in Seconds

Outline

- Background
- Accurate precision MMM (Ozaki Method)
- Parallel Implementation for Multi-core CPUs and Its Evaluation
- Conclusion

iWAPT2018 48

Conclusion

- Accuracy assurance is required for numerical computations.
- Ozaki method, which is an algorithm for high precision matrix-matrix multiplication, is one of crucial approaches to do accuracy assurance for dense linear algebra libraries.
- We have implemented a method to convert dense matrices into sparse matrices by exploiting the nature of the target algorithm and adapting sparse-vector multiplication.
- Results with the FX100 supercomputer indicate that:
 - Implementation with the ELL format achieves 1.43x speedup.
 - A maximum of 38x speedup compared to conventional implementation for dense matrix operations with dgemm.
- Because of high efficiency of cache utilization of computations after error-free transformation in Ozaki method, ELL is better format to CRS format.

SIAM PP18 50

BACKUP

SIAM PP18 51

Observed Relative Errors

Observed Relative Errors between dgemm and Ozaki Method (maximum) (double precision)

Test Matrix No.	#1		#2		#3		#4		
Dimension	dgemm	Ozaki	dgemm	Ozaki	dgemm	Ozaki	dgemm	Ozaki	
500	2.61	1.11	1.10	1.11	4.24	1.11	1.42	1.11	
	E-15	E-15	E-04	E-15	E-15	E-15	E-05	E-15	
1000	3.77	1.11	4.31	1.11	7.55	1.11	3.23	1.11	
	E-15	E-15	E-05	E-15	E-15	E-15	E-05	E-15	
2000	6.11	1.11	3.65	1.11	8.60	1.11	4.67	1.11	
	E-15	E-15	E-04	E-15	E-15	E-15	E-04	E-15	

Dramatically errors occur in MMM with inverse matrix.

Ozaki Method

High precision with comparison to dgemm.

Comparison of Execution Speed (1/4)

53

Comparison of Execution Speed (2/4)

Comparison of Execution Speed (3/4)

Comparison of Execution Speed (4/4)

Breakdown of Whole Execution Time (FX100, N=2000, Test Matrix #4)

All decomposed matrices are sparse matrices, after error free transformation.

入力行列4(N=1000)の場合の プロファイル結果

従来手法(CRS, 外部並列)

提案手法(ELL, 外部並列)

実行時間 (sec)	点	MFLOPS	L1D ミス率 (/ロード・ ストア数)		L2 ミス率 (/ロード・ ストア数)	L2 ミス数		実行時間 (sec)	浮動小数 点 演算ピーク 比	MFLOPS	L1D ミス率 (/ロード・ ストア数)	L1D ミス数	L2 ミス率 (/ロード・ ストア数)	L2 ミス数
0.04	6.08%	2141	1.94%	2.12E+06	0.05%	5.28E+04	Thread 0	0.04	6.51%	2291	1.94%	2.11E+06	0.05%	5.15E+04
0.04	6.09%	2143	1.94%	2.12E+06	0.04%	4.90E+04	Thread 1	0.04	6.53%	2297	1.94%	2.11E+06	0.05%	4.99E+04
UUV	£ 10%	2155	1 0 2 %	2 125+08	U U V W	\ 00E±0\	Thread 2	0.04	6 54%	2302	1 94%	211F+06	0.04%	4.91F+04
														$\overline{}$
0.04	5.92%	2084		25.0		4.80E+04	Thread 29	0.04	6.30%	2217) F . O	0	4.79E+04
0.04	5.93%	2086	b. b.	2 E+U	/ 6	4.80E+04	Thread 30	0.04	6.27%	2208	J 6.60	JE+U	<u>6</u>	4.79E+04
0.04	5.95%	2094	1.54%	Z UJE I UUI	U.U J /s	5.69E+04	Thread 31	0.04	6.31%	2220	1.07/	Z.00L · 00	0.00%	5.68E+04
0.04	5.94%	66873	1.94%	6.62E+07	0.05%	1.57E+06	Process	0.04	6.31%	71070	1.949	6.60E+07	0.05%	1.57E+06
	0.04 0.04 0.04 0.04 0.04	(sec) 演算ピーク 比. 0.04 6.08% 0.04 6.09% 0.04 5.92% 0.04 5.93% 0.04 5.95%	実行時間 点 演算ピーク Ht. 0.04 6.08% 2141 0.04 6.09% 2143 0.04 6.09% 2143 0.04 5.92% 2084 0.04 5.93% 2086 0.04 5.95% 2094	実行時間 点 演算ピーク H. 0.04 6.08% 2141 1.94% 0.04 6.09% 2143 1.94% 0.04 6.09% 2143 1.94% 0.04 5.92% 2084 0.04 5.93% 2086 0.04 5.95% 2094 6.65	実行時間 点 演算ピーク Ht. 0.04 6.08% 2141 1.94% 2.12E+06 0.04 6.09% 2143 1.94% 2.12E+06 0.04 6.12% 215E 1.02% 2.12E+06 0.04 5.92% 2084 0.04 5.93% 2086 0.04 5.95% 2094 6.62E+0	実行時間 点 演算ピーク H. OPS ストア数) L1D ミス数 (/ロード・ストア数) L1D ミス数 ストア数) L1D ミス数 ストア数) L1D ミス数 ストア数) D.04 6.09% 2143 1.94% 2.12E+06 0.04% 0.04 6.09% 2143 1.94% 2.12E+06 0.04% 0.04 5.93% 2086 0.04 5.93% 2086 0.04 5.95% 2094 1.34% 2.10E+100 0.05%	実行時間 点 演算ピーク Ht.	実行時間 点 演算ピーク H.	実行時間 点 演算ピーク H.	実行時間 点 演算ピーク 比 L1Dミス数 (/ロード・ストア数) L1Dミス数 ストア数) L2ミス数 実行時間 点 演算ピーク 比	実行時間 点 演算ピーク Ht. 0.04 6.08% 2141 1.94% 2.12E+06 0.05% 5.28E+04 0.04 6.09% 2143 1.94% 2.12E+06 0.04% 4.90E+04 1.04 6.53% 2297 1.02% 2155 1.02% 212E+06 0.04% 4.90E+04 1.04 6.53% 2297 1.02% 2155 1.02% 212E+06 0.04% 4.90E+04 1.04 6.53% 2297 1.02% 212E+06 0.04 6.54% 2302 1.02% 212E+06 0.04 6.54% 2302 1.02% 212E+06 0.04 6.54% 2302 1.02% 212E+06 0.04 6.50% 2297 1.02% 212E+06 0.02% 212E+06 0.04 6.50% 2297 1.02% 212E+06 0.02% 212E+06	実行時間 点 演算ピーク Ht. 0.04 6.08% 2141 1.94% 2.12E+06 0.05% 5.28E+04 0.04 6.09% 2143 1.94% 2.12E+06 0.04% 4.90E+04 1.04 6.13% 212E 1.03% 2.12E+06 0.04% 4.90E+04 1.04 6.53% 2297 1.94% 1.04 6.54% 2302 1.94% 1.94% 2.12E+06 0.04% 4.80E+04 1.94% 2.12E+06 0.04 5.93% 2086 0.04 5.93% 2086 0.04 5.95% 2094 1.34% 2.12E+07 6.62E+07 6.4.80E+04 1.34% 2.12E+06 0.04 6.31% 2220 1.34% 2.12E+06 0.04 6.31% 2.12E+06 0.04 6.	実行時間 点 演算ピーク Ht	実行時間 点 演算ピーク Hr

0.21%削減

黄色の部分は、Level 1データキャッシュにおける情報

キャッシュヒット率の向上

入力行列4(N=1000)の場合の プロファイル結果

従来手法(CRS, 外部並列)

提案手法(ELL, 外部並列)

	実行時間 (sec)	浮動小数点 点 演算ピーク 比	MFLOPS	L1D ミス率 (/ロード・ ストア数)	L1D ミス数	L2 ミス率 (/ロード・ ストア数)	L2 ミス数		実行時間 (sec)	浮動小数 点 演算ピーク 比	MFLOPS	L1D ミス率 (/ロード・ ストア数)	L1D ミス数	L2 ミス率 (/ロード・ ストア数)	L2 ミス数
Thread 0	0.04	6.08%	2141	1.94%	2.12E+06	0.05%	5.28E+04	Thread 0	0.04	6.51%	2291	1.94%	2.11E+06	0.05%	5.15E+04
Thread 1	0.04	6.09%	2143	1.94%	2.12E+06	0.04%	4.90E+04	Thread 1	0.04	6.53%	2297	1.94%	2.11E+06	0.05%	4.99E+04
المحمدا	0.04	£ 10%	2155	1 0 2 0	2 125+08	0 N A Ø	1 00E+04	Thread 2	0.04	6 54%	2302	1 94%	211F+06	0.04%	4.91F+04
Thread 29	0.0	- 040	2084	1.94%	2.05E+06	0.05%	4.80E+04	Thread 29	0.0	C 210	2217	1.94%	2.05E+06	0.05%	4.79E+04
Thread 30	0.0	5.94%	O 2086	1.94%	2.05E+06	0.05%	4.80E+04	Thread 30	0.0	6.319	O 2208	1.94%	2.05E+06	0.05%	4.79E+04
Thread 31	0.04	ე ყეუ	2094	1.94%	2.05E+06	0.05%	5.69E+04	Thread 31	0.04	0.31%	2220	1.94%	2.05E+06	0.05%	5.68E+04
Process	0.04	5.94%	66873	1.94%	6.62E+07	0.05%	1.57E+06	Process	0.04	6.31%	71070	1.94%	6.60E+07	0.05%	1.57E+06

0.37ポイント向上

黄色の部分は、Level 1データキャッシュにおける情報

キャッシュヒット率の向上