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Background
• Libraries for basic linear algebra operations, 

such as BLAS (Basic Linear Algebra Subprograms), 
are one of crucial tools for numerical computations.

• Generally speaking, accuracy assurance for 
numerical linear algebra libraries, such as LAPACK, 
is still under research. 

• On the other hand, study on accuracy assurance for 
BLAS operations is performing by Prof. Oishi group 
(Waseda University), including Prof. Ogita, and Prof. 
Ozaki .

• We forces on the research, in particular, high 
precision matrix-matrix multiplication (MMM). 

• Here after, we call the method Ozaki Method. 
6iWAPT2018
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Overview of High Precision Matrix-Matrix 
Multiplications (MMM) Algorithm 

(Ozaki Method †1) �1/3�
A Matrix-Matrix 

Multiplications A B
Summation of 
Decomposed 
Matrices with 
Floating Point 
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†1  K. Ozaki, T. Ogita, S. Oishi, S.M. Rump: Error-Free Transformation of Matrix Multiplication by 
Using Fast Routines of Matrix Multiplication and its Applications, Numerical Algorithms, Vol. 59, 
No.1, pp.95-118, 2012.

F : A Set of Floating Point
Numbers.

A :  A Matrix with m * n. 
B :  A Matrix with n * p.
C :  A * B
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Other Part of The Error Free 
Transformation in Ozaki Method

• Part of MMMs
)*% The number of decomposed matrices from matrix +.
)-%The number of decomposed matrices from matrix ..
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Algorithm
• A High Precision

Summation: 
iWAPT2018

Multiple BLAS implementation



Faithful Algorithm†
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Ozaki Method for MMM

Round-off the true answer to 
the nearest left or right floating number.

†Siegfried M. Rump, Takeshi Ogita, Shin'ichi Oishi: Accurate Floating-Point 
Summation Part I: faithful Rounding, SIAM Journal on Scientific Computing, 
31:1 (2008), 189-224.

Accuracy Assured

True Answer (Real Number)

iWAPT2018



Characteristics of Ozaki Method
• Ozaki method can establish high precision for 

MMM with extremely dispersed elements. 
• Computational complexity of Ozaki method 

depends on range of input elements. 
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(1) If dispersion of elements of matrix is large:
Sparse matrix can be utilized after error free 

translation to reduce computational complexity.

(2) If dispersion of elements of matrix is small:
Cannot reduce computational complexity. 

But, Conventional high performance implementations
(BLAS dgemm) of dense MMM can be utilized.



Error-Free Transformation (1/3)

• !1 = max(()*(+), [ ], 2) ;

• 2 = 23456(
(789: ;

<=> 789:(?>=))
:

);

+ !1

Take absolutely
maximum 
elements 
in each row.

Take maximum elements 
of products in each column.

@A = 23456(BCD:(EF)) 2
12� GHIJ()� Compute minimum integer number

�

�
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• Make T as:
T=�tA, tA, … ,  tA],

where, Tij > Aij .

( )��!" !" !"���
#

#(%) # ' (

• #(%) = *+((# + -) − -);
• # ' ( = *+(# − #(%));

Extract values which exceed 
range of expression of products 
with respect to round-off error.

Maximum number of 
products in each column. 
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Error-Free Transformation (2/3)

T = 

�

�

iWAPT2018

fl (*) : A Floating Point Computation



Error-Free Transformation (3/3)
• An image of decomposition (Error free transformation) 

A(1) A(2)

-s bit-
A(3) A(4)

-s bit--s bit- -s bit-
B(1) B(2)

-s bit-
B(3) B(4)

-s bit- -s bit- -s bit-

! = #$%%&((log+(,-.) − log+(1))/2)
Ex.) If 4%,5$6 7&689!9%1, then it should take:

#$%%&( (53 − log+ 1 /2) [bit], 
And if matrix size is 1 = 1024, then 
it should take #$%%& ?@-.A

+ = 21 [bit]. 14

#$%%&�under rounding for 
the first digit of floating 
point number.

[bit]

Matrix size 
= n x n



An Example

! =
2$ + 2&'$ 2&($ + 2&)$ 2&*$ + 2&*+
2&*$ + 2&'$ 2&*+ + 2&'+ 2* + 2&*+
2&+ + 2&(+ 2$ + 2&'$ 2+ + 2&'$

, =
2$ + 2&'$ 2&'+ + 2&-$ 2+ + 2&*+
2&+ + 2&*$ 2&'$ + 2&)$ 2&*$ + 2&'$
2&' + 2&*+ 2&)$ + 2&+$ 2&. + 2&*/
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We take the following floating point numbers. 

• Considering an inner product for 1st row of A and 1st column 
of B. We compute products of A(1,1) and B(1,1) as follows.
(12+1&32)(12 + 1&32) =  12 + 1&15 + 1&62

A rounding error is occurred in the red part with 53-bit.
• Information over 53-bit is dropped in the other part as same 

as the above.



Error-free Transformations for A
We	separate	the	matrix	with	error-free	transformations:

• 3 =
26 + 2896 28:6 + 28;6 28<6 + 28<=
28<6 + 2896 28<= + 289= 2< + 28<=
28= + 28:= 26 + 2896 2= + 2896

to the following two matrices.

• 3(<) =
26 28:6 28<6 + 28<=
28<6 28<= 2< + 28<=
28= 26 2=

• 3(:) =
2896 28;6 0
2896 289= 0
28:= 2896 2896

iWAPT2018 16



Error-free Transformations for B
We	separate	with	error-free	transformations:

• 2 =
25 + 2785 2789 + 27:5 29 + 27;9
279 + 27;5 2785 + 27<5 27;5 + 2785
278 + 27;9 27<5 + 2795 27= + 27;>

to the following two matrices.

• 2(;) =
25 2789 29 + 27;9

279 + 27;5 2785 + 27<5 27;5
278 + 27;9 27<5 + 2795 27= + 27;>

• 2(A) =
2785 27:5 0
0 0 2785
0 0 0

iWAPT2018 17



Multiplication with error-free translated 
matrices for A(1) and B(1)

• !(#) =
2' 2()' 2(#' + 2(#+
2(#' 2(#+ 2# + 2(#+
2(+ 2' 2+

• ,(#) =
2' 2(-+ 2+ + 2(#+

2(+ + 2(#' 2(-' + 2(.' 2(#'
2(- + 2(#+ 2(.' + 2(+' 2(/ + 2(#0

Products of the above MMM, such as products of the third row of !(#) and 
the first column of ,(#) is:
2(+ ∗ 2'+2'(2(+ + 2(#')+2+(2(- + 2(#+) = 2) + 2(. + 2(2.

This is all inside 53-bit computations. Hence there is no rounding error.

iWAPT2018 18

We consider the following MMM: 



Outline
• Background
• Accurate precision MMM 

(Ozaki Method)
• Parallel Implementation for 

Multi-core CPUs and Its Evaluation
• Conclusion

iWAPT2018 19



Strategy of Using Sparse Matrix 
for Our Implementation

20

Start

Error Free Transformation

If the sparsity is 
more than 90%?

SpMVdgemm

High Precision Summation

NO YES

iWAPT2018



THREAD PARALLEL 
IMPLEMENTATIONS
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Sparse Matrix Formats for SpMV (1/2)

• CRS Format
Scan non-zero elements 
for row-wise, and non-
zero elements are stored. 

22

!"#" = ", &, ', !, (, ), *
+ , = 1, 4, 5, 7, 8
2 , = 1,2,3,4,1,4,3

!"#"�An array for store of non-zero elements.
+ , �An array for store of the first position of each row in array !"#".
2(,)�An array for store of column numbers corresponding to 

elements of array data. iWAPT2018



• ELL Format
Store non-zero elements 

from left-side without 
zero elements. 
The column number is set to maximum number of 

columns of non-zero elements. If there is no non-zero 
elements, then “0” is patted. 

23

Sparse Matrix Formats for SpMV (2/2)

Proposal method 
is using ELL format 
for Ozaki Method.

iWAPT2018



Thread-level Parallelization 
of SpMV in Ozaki Method

24

for (" = 0; " < '; " + +) {
#pragma omp parallel for
for (* = 0; * < '; * + +) {

(+,)_* = Sp 0 _* 1,
}
}

#pragma omp parallel for
for " = 0; " < '; " + + {

+, = Sp 0 1,
}

#pragma omp parallel for
for (j=0; j<n; j++) {
for (i=0; i<n; i+=m) {

(+,)_* = Sp 0 2 3,:,5678
}
}

Fig1. Inner Parallelized code with OpenMP

+, = Sp 0 1, , " = 1, … , '
+,: "-th vector of Matrix C.
1,�i-th vector of Matrix B.
Sp 0 �A sparse matrix from Matrix A.

(+,)_*�j-th element of vector c_i.
Sp 0 _*�j-th vector of Sp(A). 

3,:,5678�A Matrix with 1,, 1,58 , … , 1,5678

1. Inner Parallelization
Thread-level parallelization inside 

SpMV.

Fig2. Outer Parallelized code with OpenMP

Fig3. Paralleled Code with Multiple Right-
hand-sides  with OpenMP

2. Outer Parallelization
Thread-level parallelization in multiple 

calling level of SpMV. 
(Using parallelism of columns of B)
3. Using Multiple Right-hand-sides

Dedicated inside thread-level 
parallelism of SpMV with 
multiple Right-Hand-Sides (RHS).



PERFORMANCE EVALUATION
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Performance Evaluation
Fujitsu PRIMEHPC FX100
(FX100)@ITC, Nagoya U.

CPU SPARC64 XIfx, 
2.2 GHz, 32 Cores

(+2 Assistant Cores)
Memory
Amount

32 GB

Cache 
Organization

L1: 64KB
L2: 24MB

Compiler Fujitsu C/C++ Compiler Driver 
Version 2.0.0 P-id: T01776-01

Compiler 
Options

Sparse Kernel Part:
-Kfast –Kopenmp

The others�
-O0 –Kopenmp

Memory 
Performance

480 GB/s
26



Test Matrices

27

1. (Random) Elements of matrices A and B were generated with a pseudo-
random generator from the standard uniform distribution on the open interval 
(0, 1).

2. (Random * Inverse) Elements of matrix A were generated with a 
pseudo-random generator from the standard uniform distribution on the open 
interval (0, 1). 
B = A-1 using the dgetrf and dgetri routines in LAPACK. 

3. (Sparse + Dispersed elements) Elements of matrices A and B
were generated with a pseudo-random generator from the standard uniform 
distribution on the open interval (0, 1). Then, the elements were selected with 
a specified ratio (sp_num % to total number of elements), and we added the 
selected values with pow(10, rand()%Φ ).

4. (Sparse + Dispersed elements * Inverse) Elements of 
matrix A were generated with 1 for the first row, and then they are added with 
a pseudo-random generator from the standard uniform distribution on the 
open interval (0, 1). 
B = A-1 using the dgetrf and dgetri routines in LAPACK.

* Φ determines dispersion of elements of matrix.  



Condition of Experiments

28

Implementation Methods

iWAPT2018

Details Notation
1 Simple dgemm routine call. This is not accurate MMM. simple dgemm
2 dgemm implementation in the Ozaki method. Thread parallelization is 

performed inside dgemm. 
Ozaki (dgemm)

3 Sparse matrix is generated when its sparsity is more than 90%, and SpMV is 
performed with CRS format. The parallel implementation is inner parallelization.

Ozaki
(CRS, Inner)

4 The implementation is the same as that in 3. The parallel implementation is 
outer parallelization.

Ozaki
(CRS, Outer)

5 The implementation is the same as that in 3. The parallel implementation is 
inner parallelization with multiple vectors of RHS.

Ozaki
(CRS, Multi RHS)

6 The implementation is the same as that in 3. The parallel implementation is 
inner parallelization with multiple vectors of RHS and the blocking factor is 100.

Ozaki
(CRS, Multi RHS(100))

7 Sparse matrix is generated when its sparsity is more than 90%, and SpMV is 
performed with ELL format. The parallel implementation is inner parallelization.

Ozaki
(ELL, Inner)

8 The implementation is the same as that in 7. The parallel implementation is 
outer parallelization.

Ozaki
(ELL, Outer)

9 The implementation is the same as that in 7. The parallel implementation is 
inner parallelization with multiple vectors of RHS.

Ozaki
(ELL, Multi RHS)

10 The implementation is the same as that in 3. The parallel implementation is 
inner parallelization with multiple vectors of RHS and the blocking factor is 100.

Ozaki
(ELL, Multi RHS(100))

11 The implementation is with accurate sum for MMM (dot2 [10]). Only dense 
matrix optimization is performed in the current version. 

Inner Products

Conventional BLAS

Conventional Ozaki
Implementation

CRS

ELL



Condition of Experiments
• Matrix Sizes: N=500, and N=1000.
• Φ = 5. (a constant value.)
• Using 1 node. (32 threads)
• Result is verified with MPFR Library, which has 

binary 212 digits in this experiment 
(almost as same as quad double precision).

• Maximum relative error is calculated with: 

!",#∗ means elements of matrix with " –th row and 

# − th column.
29iWAPT2018



RESULTS
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NUMBER OF NON-ZERO 
ELEMENTS FOR ERROR-FREE 
TRANSFORMED MATRICES
AND
NUMBER OF SPARSE MATRICES  
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Number of Non-zero Elements for Error-free 
Transformed Matrices for A (N=1000) 

Test #
1 2 3 4

A(i) Max Min Max Min Max Min Max Min

A(1) 1000 1000 1000 1000 1000 996 92 91
A(2) 1000 998 1000 998 1000 998 91 90
A(3) 86 34 87 40 1000 993 91 85
A(4) - - - - 7 0 - -

32

Let a decomposed matrix of A be  A(i).
(i =1, 2,…, p, where p is the number of decompositions for A.�
The yellow parts show sparse matrices after error free translation.

Number of non-zero elements for sparse matrix by error free transformation is small. 
The number of non-zero elements per column is almost constant. 

Computation efficiency is getting high by ELL.



EXECUTION SPEED AND 
COMPUTATION ACCURACY 
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Execution speed and computation 
accuracy (N=500)

iWAPT2018 34

Matrix 1

370x slower
23x high accuracy



Execution speed and computation 
accuracy (N=500)
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Matrix 2

5.25x1018x 
high accuracy



Execution speed and computation 
accuracy (N=500)
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Matrix 3

2.18x1021x 
high accuracy



Execution speed and computation 
accuracy (N=500)
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Matrix 4

6.60x1018x 
high accuracy



KERNEL SPEEDUPS 
BASED ON OZAKI (DGEMM)  
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Kernel speedups 
based on Ozaki (dgemm) (N=1000)

iWAPT2018 39

Matrix 1

1.43x

→High Computation Efficiency of ELL.



Kernel speedups 
based on Ozaki (dgemm) (N=1000)
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Matrix 2



Kernel speedups 
based on Ozaki (dgemm) (N=1000)
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Matrix 3

1.25x



Kernel speedups 
based on Ozaki (dgemm) (N=1000)
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Matrix 4

38.6x
→Effect of Sparselization. 



BREAKDOWN OF EXECUTION 
(WHOLE) 
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Breakdown of Execution (Whole) 
(N=1000)
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Matrix 1

→SpMV time in ELL is the fastest.



Breakdown of Execution (Whole) 
(N=1000)
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Matrix 2



Breakdown of Execution (Whole) 
(N=1000)
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Matrix 3
→SpMV time in ELL is the fastest.



Breakdown of Execution (Whole) 
(N=1000)
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Matrix 4

→SpMV time in ELL is the fastest.
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Conclusion  
• Accuracy assurance is required for numerical computations.
• Ozaki method, which is an algorithm for high precision matrix-matrix 

multiplication, is one of crucial approaches to do accuracy assurance 
for dense linear algebra libraries.

• We have implemented a method to convert dense matrices into 
sparse matrices by exploiting the nature of the target algorithm and 
adapting sparse-vector multiplication. 

• Results with the FX100 supercomputer indicate that:
– Implementation with the ELL format achieves 1.43x speedup.
– A maximum of 38x speedup compared to conventional 

implementation for dense matrix operations with dgemm.

• Because of high efficiency of cache utilization of 
computations after error-free transformation in Ozaki 
method, ELL is better format to CRS format.
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Observed Relative Errors 

Test Matrix No. #1 #2 #3 #4

Dimension dgemm Ozaki dgemm Ozaki dgemm Ozaki dgemm Ozaki

500 2.61
E-15

1.11
E-15

1.10
E-04

1.11
E-15

4.24
E-15

1.11
E-15

1.42
E-05

1.11
E-15

1000 3.77
E-15

1.11
E-15

4.31
E-05

1.11
E-15

7.55
E-15

1.11
E-15

3.23
E-05

1.11
E-15

2000 6.11
E-15

1.11
E-15

3.65
E-04

1.11
E-15

8.60
E-15

1.11
E-15

4.67
E-04

1.11
E-15

52

Observed Relative Errors between dgemm and Ozaki Method (maximum)
(double precision)

Ozaki Method

Dramatically errors occur in MMM with inverse matrix.

High precision 
with comparison to dgemm.

iWAPT2018



Comparison of Execution Speed (1/4)
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Comparison of Execution Speed (2/4)
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Comparison of Execution Speed (3/4)

Increase 
24.9%
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Comparison of Execution Speed (4/4)
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Breakdown of Whole Execution Time 
(FX100, N=2000�Test Matrix #4)
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Other 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.028 0.028 0.028
SpMV 0.000 0.000 0.761 0.256 0.465 1.012 0.700 0.246 0.480 1.039
Set SpMV 0.000 0.000 0.030 0.030 0.030 0.030 0.031 0.031 0.031 0.031
Dgemm 0.000 0.923444 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Error Free 0.000 1.793 1.793 1.793 1.793 1.793 1.793 1.793 1.793 1.793
Kernel 0.121084 2.717 2.584 2.079 2.288 2.836 2.553 2.098 2.332 2.892
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Implementations

Error Free Dgemm Set SpMV SpMV Other Kernel

All decomposed matrices are sparse matrices, after error free transformation.
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