
THREADED ACCURATE
MATRIX-MATRIX MULTIPLICATIONS

WITH SPARSE MATRIX-VECTOR
MULTIPLICATIONS

Shuntaro Ichimura(1), Takahiro Katagiri(2),
Katsuhisa Ozaki(3), Takeshi Ogita(4), Toru Nagai(2)

iWAPT2018 3

(1) Graduate School of Information Science, Nagoya University
(2) Information Technology Center, Nagoya University
(3) College of System Engineering and Science, Shibaura Institute of

Technology
(4) Division of Mathematical Science, Tokyo Woman’s Christian University

The Thirteenth International Workshop on Automatic Performance Tuning
(iWAPT2018), May 25, 2018, JW Marriott Parq Vancouver, Vancouver,
British Columbia CANADA, AT Techniques, 10:30 - 12:30, May 25, 2018

Outline
• Background
• Accurate precision MMM

(Ozaki Method)
• Parallel Implementation for

Multi-core CPUs and Its Evaluation
• Conclusion

iWAPT2018 4

Outline
• Background
• Accurate precision MMM

(Ozaki Method)
• Parallel Implementation for

Multi-core CPUs and Its Evaluation
• Conclusion

iWAPT2018 5

Background
• Libraries for basic linear algebra operations,

such as BLAS (Basic Linear Algebra Subprograms),
are one of crucial tools for numerical computations.

• Generally speaking, accuracy assurance for
numerical linear algebra libraries, such as LAPACK,
is still under research.

• On the other hand, study on accuracy assurance for
BLAS operations is performing by Prof. Oishi group
(Waseda University), including Prof. Ogita, and Prof.
Ozaki .

• We forces on the research, in particular, high
precision matrix-matrix multiplication (MMM).

• Here after, we call the method Ozaki Method.
6iWAPT2018

Outline
• Background
• Accurate precision MMM

(Ozaki Method)
• Parallel Implementation for

Multi-core CPUs and Its Evaluation
• Conclusion

iWAPT2018 7

Overview of High Precision Matrix-Matrix
Multiplications (MMM) Algorithm

(Ozaki Method †1) �1/3�
A Matrix-Matrix

Multiplications A B
Summation of
Decomposed
Matrices with
Floating Point

Operations

pm
q

r

q
q

FC

CABC

´

=

Î

== å
1

Error-Free
Transformation

8

†1 K. Ozaki, T. Ogita, S. Oishi, S.M. Rump: Error-Free Transformation of Matrix Multiplication by
Using Fast Routines of Matrix Multiplication and its Applications, Numerical Algorithms, Vol. 59,
No.1, pp.95-118, 2012.

F : A Set of Floating Point
Numbers.

A : A Matrix with m * n.
B : A Matrix with n * p.
C : A * B

iWAPT2018

Other Part of The Error Free
Transformation in Ozaki Method

• Part of MMMs
)*% The number of decomposed matrices from matrix +.
)-%The number of decomposed matrices from matrix ..

9

�"��!���
��
�
����"��������
������ ���
�����!��	� ������ ���
�����!��	

� �
��	
�� ��
�����

�� �
�����

��#�� $��
���#�� $�����#�� $	���� �
�� ���	
���	�����	��

���

+. = 0
123

45647
89(1) Faithful

Algorithm
• A High Precision

Summation:
iWAPT2018

Multiple BLAS implementation

Faithful Algorithm†

10

Ozaki Method for MMM

Round-off the true answer to
the nearest left or right floating number.

†Siegfried M. Rump, Takeshi Ogita, Shin'ichi Oishi: Accurate Floating-Point
Summation Part I: faithful Rounding, SIAM Journal on Scientific Computing,
31:1 (2008), 189-224.

Accuracy Assured

True Answer (Real Number)

iWAPT2018

Characteristics of Ozaki Method
• Ozaki method can establish high precision for

MMM with extremely dispersed elements.
• Computational complexity of Ozaki method

depends on range of input elements.

11

(1) If dispersion of elements of matrix is large:
Sparse matrix can be utilized after error free

translation to reduce computational complexity.

(2) If dispersion of elements of matrix is small:
Cannot reduce computational complexity.

But, Conventional high performance implementations
(BLAS dgemm) of dense MMM can be utilized.

Error-Free Transformation (1/3)

• !1 = max(()*(+), [], 2) ;

• 2 = 23456(
(789: ;

<=> 789:(?>=))
:

);

+ !1

Take absolutely
maximum
elements
in each row.

Take maximum elements
of products in each column.

@A = 23456(BCD:(EF)) 2
12� GHIJ()� Compute minimum integer number

�

�

iWAPT2018

• Make T as:
T=�tA, tA, … , tA],

where, Tij > Aij .

()��!" !" !"���
#

#(%) # ' (

• #(%) = *+((# + -) − -);
• # ' (= *+(# − #(%));

Extract values which exceed
range of expression of products
with respect to round-off error.

Maximum number of
products in each column.

13

Error-Free Transformation (2/3)

T =

�

�

iWAPT2018

fl (*) : A Floating Point Computation

Error-Free Transformation (3/3)
• An image of decomposition (Error free transformation)

A(1) A(2)

-s bit-
A(3) A(4)

-s bit--s bit- -s bit-
B(1) B(2)

-s bit-
B(3) B(4)

-s bit- -s bit- -s bit-

! = #$%%&((log+(,-.) − log+(1))/2)
Ex.) If 4%,5$6 7&689!9%1, then it should take:

#$%%&((53 − log+ 1 /2) [bit],
And if matrix size is 1 = 1024, then
it should take #$%%& ?@-.A

+ = 21 [bit]. 14

#$%%&�under rounding for
the first digit of floating
point number.

[bit]

Matrix size
= n x n

An Example

! =
2$ + 2&'$ 2&($ + 2&)$ 2&*$ + 2&*+
2&*$ + 2&'$ 2&*+ + 2&'+ 2* + 2&*+
2&+ + 2&(+ 2$ + 2&'$ 2+ + 2&'$

, =
2$ + 2&'$ 2&'+ + 2&-$ 2+ + 2&*+
2&+ + 2&*$ 2&'$ + 2&)$ 2&*$ + 2&'$
2&' + 2&*+ 2&)$ + 2&+$ 2&. + 2&*/

iWAPT2018 15

We take the following floating point numbers.

• Considering an inner product for 1st row of A and 1st column
of B. We compute products of A(1,1) and B(1,1) as follows.
(12+1&32)(12 + 1&32) = 12 + 1&15 + 1&62

A rounding error is occurred in the red part with 53-bit.
• Information over 53-bit is dropped in the other part as same

as the above.

Error-free Transformations for A
We	separate	the	matrix	with	error-free	transformations:

• 3 =
26 + 2896 28:6 + 28;6 28<6 + 28<=
28<6 + 2896 28<= + 289= 2< + 28<=
28= + 28:= 26 + 2896 2= + 2896

to the following two matrices.

• 3(<) =
26 28:6 28<6 + 28<=
28<6 28<= 2< + 28<=
28= 26 2=

• 3(:) =
2896 28;6 0
2896 289= 0
28:= 2896 2896

iWAPT2018 16

Error-free Transformations for B
We	separate	with	error-free	transformations:

• 2 =
25 + 2785 2789 + 27:5 29 + 27;9
279 + 27;5 2785 + 27<5 27;5 + 2785
278 + 27;9 27<5 + 2795 27= + 27;>

to the following two matrices.

• 2(;) =
25 2789 29 + 27;9

279 + 27;5 2785 + 27<5 27;5
278 + 27;9 27<5 + 2795 27= + 27;>

• 2(A) =
2785 27:5 0
0 0 2785
0 0 0

iWAPT2018 17

Multiplication with error-free translated
matrices for A(1) and B(1)

• !(#) =
2' 2()' 2(#' + 2(#+
2(#' 2(#+ 2# + 2(#+
2(+ 2' 2+

• ,(#) =
2' 2(-+ 2+ + 2(#+

2(+ + 2(#' 2(-' + 2(.' 2(#'
2(- + 2(#+ 2(.' + 2(+' 2(/ + 2(#0

Products of the above MMM, such as products of the third row of !(#) and
the first column of ,(#) is:
2(+ ∗ 2'+2'(2(+ + 2(#')+2+(2(- + 2(#+) = 2) + 2(. + 2(2.

This is all inside 53-bit computations. Hence there is no rounding error.

iWAPT2018 18

We consider the following MMM:

Outline
• Background
• Accurate precision MMM

(Ozaki Method)
• Parallel Implementation for

Multi-core CPUs and Its Evaluation
• Conclusion

iWAPT2018 19

Strategy of Using Sparse Matrix
for Our Implementation

20

Start

Error Free Transformation

If the sparsity is
more than 90%?

SpMVdgemm

High Precision Summation

NO YES

iWAPT2018

THREAD PARALLEL
IMPLEMENTATIONS

iWAPT2018 21

Sparse Matrix Formats for SpMV (1/2)

• CRS Format
Scan non-zero elements
for row-wise, and non-
zero elements are stored.

22

!"#" = ", &, ', !, (,), *
+ , = 1, 4, 5, 7, 8
2 , = 1,2,3,4,1,4,3

!"#"�An array for store of non-zero elements.
+ , �An array for store of the first position of each row in array !"#".
2(,)�An array for store of column numbers corresponding to

elements of array data. iWAPT2018

• ELL Format
Store non-zero elements

from left-side without
zero elements.
The column number is set to maximum number of

columns of non-zero elements. If there is no non-zero
elements, then “0” is patted.

23

Sparse Matrix Formats for SpMV (2/2)

Proposal method
is using ELL format
for Ozaki Method.

iWAPT2018

Thread-level Parallelization
of SpMV in Ozaki Method

24

for (" = 0; " < '; " + +) {
#pragma omp parallel for
for (* = 0; * < '; * + +) {

(+,)_* = Sp 0 _* 1,
}
}

#pragma omp parallel for
for " = 0; " < '; " + + {

+, = Sp 0 1,
}

#pragma omp parallel for
for (j=0; j<n; j++) {
for (i=0; i<n; i+=m) {

(+,)_* = Sp 0 2 3,:,5678
}
}

Fig1. Inner Parallelized code with OpenMP

+, = Sp 0 1, , " = 1, … , '
+,: "-th vector of Matrix C.
1,�i-th vector of Matrix B.
Sp 0 �A sparse matrix from Matrix A.

(+,)_*�j-th element of vector c_i.
Sp 0 _*�j-th vector of Sp(A).

3,:,5678�A Matrix with 1,, 1,58 , … , 1,5678

1. Inner Parallelization
Thread-level parallelization inside

SpMV.

Fig2. Outer Parallelized code with OpenMP

Fig3. Paralleled Code with Multiple Right-
hand-sides with OpenMP

2. Outer Parallelization
Thread-level parallelization in multiple

calling level of SpMV.
(Using parallelism of columns of B)
3. Using Multiple Right-hand-sides

Dedicated inside thread-level
parallelism of SpMV with
multiple Right-Hand-Sides (RHS).

PERFORMANCE EVALUATION

iWAPT2018 25

Performance Evaluation
Fujitsu PRIMEHPC FX100
(FX100)@ITC, Nagoya U.

CPU SPARC64 XIfx,
2.2 GHz, 32 Cores

(+2 Assistant Cores)
Memory
Amount

32 GB

Cache
Organization

L1: 64KB
L2: 24MB

Compiler Fujitsu C/C++ Compiler Driver
Version 2.0.0 P-id: T01776-01

Compiler
Options

Sparse Kernel Part:
-Kfast –Kopenmp

The others�
-O0 –Kopenmp

Memory
Performance

480 GB/s
26

Test Matrices

27

1. (Random) Elements of matrices A and B were generated with a pseudo-
random generator from the standard uniform distribution on the open interval
(0, 1).

2. (Random * Inverse) Elements of matrix A were generated with a
pseudo-random generator from the standard uniform distribution on the open
interval (0, 1).
B = A-1 using the dgetrf and dgetri routines in LAPACK.

3. (Sparse + Dispersed elements) Elements of matrices A and B
were generated with a pseudo-random generator from the standard uniform
distribution on the open interval (0, 1). Then, the elements were selected with
a specified ratio (sp_num % to total number of elements), and we added the
selected values with pow(10, rand()%Φ).

4. (Sparse + Dispersed elements * Inverse) Elements of
matrix A were generated with 1 for the first row, and then they are added with
a pseudo-random generator from the standard uniform distribution on the
open interval (0, 1).
B = A-1 using the dgetrf and dgetri routines in LAPACK.

* Φ determines dispersion of elements of matrix.

Condition of Experiments

28

Implementation Methods

iWAPT2018

Details Notation
1 Simple dgemm routine call. This is not accurate MMM. simple dgemm
2 dgemm implementation in the Ozaki method. Thread parallelization is

performed inside dgemm.
Ozaki (dgemm)

3 Sparse matrix is generated when its sparsity is more than 90%, and SpMV is
performed with CRS format. The parallel implementation is inner parallelization.

Ozaki
(CRS, Inner)

4 The implementation is the same as that in 3. The parallel implementation is
outer parallelization.

Ozaki
(CRS, Outer)

5 The implementation is the same as that in 3. The parallel implementation is
inner parallelization with multiple vectors of RHS.

Ozaki
(CRS, Multi RHS)

6 The implementation is the same as that in 3. The parallel implementation is
inner parallelization with multiple vectors of RHS and the blocking factor is 100.

Ozaki
(CRS, Multi RHS(100))

7 Sparse matrix is generated when its sparsity is more than 90%, and SpMV is
performed with ELL format. The parallel implementation is inner parallelization.

Ozaki
(ELL, Inner)

8 The implementation is the same as that in 7. The parallel implementation is
outer parallelization.

Ozaki
(ELL, Outer)

9 The implementation is the same as that in 7. The parallel implementation is
inner parallelization with multiple vectors of RHS.

Ozaki
(ELL, Multi RHS)

10 The implementation is the same as that in 3. The parallel implementation is
inner parallelization with multiple vectors of RHS and the blocking factor is 100.

Ozaki
(ELL, Multi RHS(100))

11 The implementation is with accurate sum for MMM (dot2 [10]). Only dense
matrix optimization is performed in the current version.

Inner Products

Conventional BLAS

Conventional Ozaki
Implementation

CRS

ELL

Condition of Experiments
• Matrix Sizes: N=500, and N=1000.
• Φ = 5. (a constant value.)
• Using 1 node. (32 threads)
• Result is verified with MPFR Library, which has

binary 212 digits in this experiment
(almost as same as quad double precision).

• Maximum relative error is calculated with:

!",#∗ means elements of matrix with " –th row and

− th column.
29iWAPT2018

RESULTS

iWAPT2018 30

NUMBER OF NON-ZERO
ELEMENTS FOR ERROR-FREE
TRANSFORMED MATRICES
AND
NUMBER OF SPARSE MATRICES

iWAPT2018 31

Number of Non-zero Elements for Error-free
Transformed Matrices for A (N=1000)

Test #
1 2 3 4

A(i) Max Min Max Min Max Min Max Min

A(1) 1000 1000 1000 1000 1000 996 92 91
A(2) 1000 998 1000 998 1000 998 91 90
A(3) 86 34 87 40 1000 993 91 85
A(4) - - - - 7 0 - -

32

Let a decomposed matrix of A be A(i).
(i =1, 2,…, p, where p is the number of decompositions for A.�
The yellow parts show sparse matrices after error free translation.

Number of non-zero elements for sparse matrix by error free transformation is small.
The number of non-zero elements per column is almost constant.

Computation efficiency is getting high by ELL.

EXECUTION SPEED AND
COMPUTATION ACCURACY

iWAPT2018 33

Execution speed and computation
accuracy (N=500)

iWAPT2018 34

Matrix 1

370x slower
23x high accuracy

Execution speed and computation
accuracy (N=500)

iWAPT2018 35

Matrix 2

5.25x1018x
high accuracy

Execution speed and computation
accuracy (N=500)

iWAPT2018 36

Matrix 3

2.18x1021x
high accuracy

Execution speed and computation
accuracy (N=500)

iWAPT2018 37

Matrix 4

6.60x1018x
high accuracy

KERNEL SPEEDUPS
BASED ON OZAKI (DGEMM)

iWAPT2018 38

Kernel speedups
based on Ozaki (dgemm) (N=1000)

iWAPT2018 39

Matrix 1

1.43x

→High Computation Efficiency of ELL.

Kernel speedups
based on Ozaki (dgemm) (N=1000)

iWAPT2018 40

Matrix 2

Kernel speedups
based on Ozaki (dgemm) (N=1000)

iWAPT2018 41

Matrix 3

1.25x

Kernel speedups
based on Ozaki (dgemm) (N=1000)

iWAPT2018 42

Matrix 4

38.6x
→Effect of Sparselization.

BREAKDOWN OF EXECUTION
(WHOLE)

iWAPT2018 43

Breakdown of Execution (Whole)
(N=1000)

iWAPT2018 44

Matrix 1

→SpMV time in ELL is the fastest.

Breakdown of Execution (Whole)
(N=1000)

iWAPT2018 45

Matrix 2

Breakdown of Execution (Whole)
(N=1000)

iWAPT2018 46

Matrix 3
→SpMV time in ELL is the fastest.

Breakdown of Execution (Whole)
(N=1000)

iWAPT2018 47

Matrix 4

→SpMV time in ELL is the fastest.

Outline
• Background
• Accurate precision MMM

(Ozaki Method)
• Parallel Implementation for

Multi-core CPUs and Its Evaluation
• Conclusion

iWAPT2018 48

Conclusion
• Accuracy assurance is required for numerical computations.
• Ozaki method, which is an algorithm for high precision matrix-matrix

multiplication, is one of crucial approaches to do accuracy assurance
for dense linear algebra libraries.

• We have implemented a method to convert dense matrices into
sparse matrices by exploiting the nature of the target algorithm and
adapting sparse-vector multiplication.

• Results with the FX100 supercomputer indicate that:
– Implementation with the ELL format achieves 1.43x speedup.
– A maximum of 38x speedup compared to conventional

implementation for dense matrix operations with dgemm.

• Because of high efficiency of cache utilization of
computations after error-free transformation in Ozaki
method, ELL is better format to CRS format.

49

SIAM PP18 50

BACKUP

SIAM PP18 51

Observed Relative Errors

Test Matrix No. #1 #2 #3 #4

Dimension dgemm Ozaki dgemm Ozaki dgemm Ozaki dgemm Ozaki

500 2.61
E-15

1.11
E-15

1.10
E-04

1.11
E-15

4.24
E-15

1.11
E-15

1.42
E-05

1.11
E-15

1000 3.77
E-15

1.11
E-15

4.31
E-05

1.11
E-15

7.55
E-15

1.11
E-15

3.23
E-05

1.11
E-15

2000 6.11
E-15

1.11
E-15

3.65
E-04

1.11
E-15

8.60
E-15

1.11
E-15

4.67
E-04

1.11
E-15

52

Observed Relative Errors between dgemm and Ozaki Method (maximum)
(double precision)

Ozaki Method

Dramatically errors occur in MMM with inverse matrix.

High precision
with comparison to dgemm.

iWAPT2018

Comparison of Execution Speed (1/4)

53

0.082

0.018 0.023
0.040

0.065

0.016
0.027

0.046

0.000
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090

�
	
�

CRS�
�

�
�
�

�
	
�

CRS�
�

�
�
�

�
	
�

CRS�
�
�
�
�
�

�
	
�

CRS�
�
�
�
�
�

10
0�
�

�

�

ELL�
�

�
�
�

�

�

ELL�
�

�
�
�

�

�

ELL�
�
�
�
�
�

�

�

ELL�
�
�
�
�
�

10
0�
�

Matrix #1

Reduction
8.5%

Execution Tim
e [s]

Con
ve

nti
on

al
�C

RS, In
ne

r�

Con
ve

nti
on

al
�C

RS, O
ute

r�
Con

ve
nti

on
al
�C

RS,

Mult
ipl

e R
HS)

Con
ve

nti
on

al
�C

RS,

Mult
ipl

e R
HS (B

loc
k=

10
0)�

Prop
osa

l �
ELL, In

ne
r�

Prop
osa

l �
ELL, O

ute
r�

Prop
osa

l �
ELL,

Mult
ipl

e R
HS�

Prop
osa

l �
ELL,

Mult
ipl

e R
HS (B

loc
k=

10
0)�

iWAPT2018

Comparison of Execution Speed (2/4)
0.0823

0.0180
0.0230

0.0390

0.0654

0.0170
0.0272

0.0462

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

�
	
�

CRS�
�

�
�
�

�
	
�

CRS�
�

�
�
�

�
	
�

CRS�
�
�
�
�
�

�
	
�

CRS�
�
�
�
�
�

10
0�
�

�

�

ELL�
�

�
�
�

�

�

ELL�
�

�
�
�

�

�

ELL�
�
�
�
�
�

�

�

ELL�
�
�
�
�
�

10
0�
�

Reduction
5.9%

Execution Tim
e [s]

Matrix #2

Con
ve

nti
on

al
�C

RS, In
ne

r�

Con
ve

nti
on

al
�C

RS, O
ute

r�
Con

ve
nti

on
al
�C

RS,

Mult
ipl

e R
HS)

Con
ve

nti
on

al
�C

RS,

Mult
ipl

e R
HS (B

loc
k=

10
0)�

Prop
osa

l �
ELL, In

ne
r�

Prop
osa

l �
ELL, O

ute
r�

Prop
osa

l �
ELL,

Mult
ipl

e R
HS�

Prop
osa

l �
ELL,

Mult
ipl

e R
HS (B

loc
k=

10
0)�

iWAPT2018 54

Comparison of Execution Speed (3/4)

Increase
24.9%

Execution Tim
e [s]

Con
ve

nti
on

al
�C

RS, In
ne

r�

Con
ve

nti
on

al
�C

RS, O
ute

r�

Con
ve

nti
on

al�
CRS,

Mult
ipl

e R
HS)

Con
ve

nti
on

al
�C

RS,

Mult
ipl

e R
HS (B

loc
k=

10
0)�

Prop
osa

l �
ELL, In

ne
r�

Prop
osa

l �
ELL, O

ute
r�

Prop
osa

l �
ELL,

Mult
ipl

e R
HS�

Prop
osa

l �
ELL,

Mult
ipl

e R
HS

(B
loc

k=
10

0)�

Matrix #3

iWAPT2018 55

Comparison of Execution Speed (4/4)

56

0.206

0.046
0.072

0.129

0.169

0.044
0.072

0.129

0.000

0.050

0.100

0.150

0.200

0.250

�
	
�

CRS�
�

�
�
�

�
	
�

CRS�
�

�
�
�

�
	
�

CRS�
�
�
�
�
�

�
	
�

CRS�
�
�
�
�
�

10
0�
�

�

�

ELL�
�

�
�
�

�

�

ELL�
�

�
�
�

�

�

ELL�
�
�
�
�
�

�

�

ELL�
�
�
�
�
�

10
0�
�

Reduction
4.6%

Execution Tim
e [s]

Con
ve

nti
on

al
�C

RS, In
ne

r�

Con
ve

nti
on

al
�C

RS, O
ute

r�

Con
ve

nti
on

al
�C

RS,

Mult
ipl

e R
HS)

Con
ve

nti
on

al
�C

RS,

Mult
ipl

e R
HS (B

loc
k=

10
0)�

Prop
osa

l �
ELL, In

ne
r�

Prop
osa

l �
ELL, O

ute
r�

Prop
osa

l �
ELL,

Mult
ipl

e R
HS�

Prop
osa

l �
ELL,

Mult
ipl

e R
HS

(B
loc

k=
10

0)�

Matrix #4

iWAPT2018

Breakdown of Whole Execution Time
(FX100, N=2000�Test Matrix #4)

57

dgemm �	
(dgemm)

�	�CRS�
�
���

�	�CRS�
�
���

�	�CRS�
�����

�	�CRS�
����

�100��

�
�ELL��

���

�
�ELL��

���

�
�ELL��
����

�
�ELL��
���

�100��
Other 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.028 0.028 0.028
SpMV 0.000 0.000 0.761 0.256 0.465 1.012 0.700 0.246 0.480 1.039
Set SpMV 0.000 0.000 0.030 0.030 0.030 0.030 0.031 0.031 0.031 0.031
Dgemm 0.000 0.923444 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Error Free 0.000 1.793 1.793 1.793 1.793 1.793 1.793 1.793 1.793 1.793
Kernel 0.121084 2.717 2.584 2.079 2.288 2.836 2.553 2.098 2.332 2.892

0.12

2.10

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

Ex
ec

ut
io

n
Ti

m
e

[s
]

Implementations

Error Free Dgemm Set SpMV SpMV Other Kernel

All decomposed matrices are sparse matrices, after error free transformation.

Conventional
�CRS,
Inner�

Conventional
�CRS,
Outer)

Conventional
�CRS,

Multiple
RHS)

Conventional
�CRS,

Multiple
RHS

(Block=100)�

Proposal
�ELL,
Inner�

Proposal
�ELL,
Outer�

Proposal
�ELL,

Multiple
RHS�

Proposal
�ELL,

Multiple
RHS

(Block=100)�

Conventional
�dgemm�

dgemm

17.5x
Speed-down

Ozaki

dgemm

iWAPT2018

����42N=10003����
,0+"#/��

58

���2CRS4����3 ����2ELL4����3

����� 4Level 1(1&$-'%.���!�

$-'%.*')��	�

0.21%��

6.62E+07 6.60E+07

����42N=10003�
��
*/) !.��

59

����2CRS4����3 ����2ELL4����3

������4Level 1&1$",%#-����
	

",%#-(%'����

0.37+!0'��

5.94% 6.31%

