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Background
◼ Black Box Optimization

• The optimality is defined by an unknown objective function.
• A trial is to calculate output 𝑦 for a given input 𝑥.

• Trials are repeated many times with different inputs to find the optimal 
solution, which maximizes the unknown objective function.

• It is required to optimize the function with a smaller number of trials 
especially if a trial is expensive.

• Brute-force approaches (e.g., random search) could take a long time to 
find an optimal solution because of too many trials.

→ Only a promising input should be evaluated at each trial to 
find an optimal solution with as few trials as possible.
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𝑥 𝑦𝒚 = 𝒇(𝒙)

Input Output

Unknown (the equation is not given) function



Background
◼ Bayesian Optimization (BO)

• A major approach to black box optimization with expensive trials.

• Promising inputs are evaluated selectively based on the results of 
preceding trials.

◼ Parallel Bayesian Optimization (PBO)
• The execution time would basically become shorter by making multiple 

trials in parallel.

• However, making too many trials in parallel is likely to increase the total 
number of trials to get a good solution [1] (as discussed later) .
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[1] Chaoyi Zhang, Ryusuke Egawa, Hiroyuki Takizawa. Acceleration of Hyper-Parameter Auto-Tuning with Parallelization and 

Time Constraints. Poster presentation at HPC ASIA, 2020.
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◼ Suppose a fixed number of compute nodes.
• More nodes should be used for each trial (evaluation parallelism), or

more trials should be executed in parallel (BO parallelism)?

• The best way of using system parallelism depends on the parallelization 
efficiencies of PBO and each trial.

• Both PBO and each trial do not scale linearly with the number of nodes.

→ This paper focuses on auto-tuning of I and J.

Background
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Execution Time

8 nodes are available for PBO.

Make 2 parallel trials, each of 

which uses 4 nodes.

Make 4 parallel trials, each of 

which uses 2 nodes.

Trial
w/ 4 nodes

Trial
w/ 4 nodes

Trial
w/ 4 nodes

Trial
w/ 4 nodes

Trial
w/ 4 nodes

Trial
w/ 4 nodes

Trial
w /4 nodes

Trial
w/ 4 nodes

2 parallel trials

4 parallel trials

Trial w/ 2 nodes Trial w/ 2 nodes

Trial w/ 2 nodes Trial w/ 2 nodes

Trial w/ 2 nodes Trial w/ 2 nodes

Trial w/ 2 nodes Trial w/ 2 nodes

(𝐼, 𝐽) = (2, 4)

(𝐼, 𝐽) = (4, 2)
𝐼 : The number of parallel trials

𝐽 : The number of nodes for each trial



Goal and Approach

◼Goal
• Efficient execution of black box optimization by PBO 

with making a good use of system parallelism.

• The total execution time is shorter

◼Approach = Auto-tuning
• The way of using system parallelism is dynamically 

changed by auto-tuning parameters 𝐼 and 𝐽.
• The best balance between I and J changes accordingly to 

the optimization progress.

→ This work proposes an auto-tuning method of I and J.
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What’s BO?
◼ Bayesian Optimization

• BO uses the results of preceding trials to find inputs that are 
promising to maximize the optimality defined by an unknown 
objective function.

① Gaussian Process Regression of unknown objective function

②Acquisition function 𝛼(𝑥) to select promising inputs 
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ー Objective function 
The actual input-output relationship is unknown

● Observed value
The output value observed at a trial in the past

ー Expected value (estimated function by GPR)
▨ Standard deviation

becomes large in uncertain region

• The acquisition function is defined by using the 
expectation and standard deviation.

• Expected Improvement (EI) is used in this work.

• The input with the maximum value is selected.

• The input has a larger expectation (exploitive) or a 
larger standard deviation (explorative).



◼ Parallel Bayesian Optimization
• Multiple inputs are selected at once. 

• Once an input is selected, the next one is 
selected near the previous one by 

① The input with maximum EI is selected.
② The EI is updated nearby the input 

selected at ①
③ The updated EI is used to select the next 

input.
・The next input must not be the same as the 
previous one. → The input with the second-
largest EI is selected.

What’s PBO?

International Workshop on Automatic Performance Tuning (iWAPT)

①

②

𝑥(𝑞): the 𝑞-th input to be selected



Exploration and Exploitation
◼ Balancing exploration and exploitation

• Exploration : search uncertain regions with larger standard 
deviations to find an unexplored better region.

• Exploitation : search promising regions with larger expectations to 
find a better solution within an explored promising region.

→ Both are needed and important for efficient optimization.

◼ How to balance exploration and exploitation
• Exploitation is not efficient at first because GPR is inaccurate [2].

• There is no information about the objective function at first, and it is 
impossible for BO to select appropriate inputs.

→ BO should be more explorative until GPR becomes accurate after 
enough trials, and then become more exploitative.
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[2] Stefan Falker, Aaron Klein, Frank Hutter. BOHB: Robust and Efficient Hyperparameter Optimization at Scale. Proceedings of 
the 35 th International Conference on Machine Learning(ICML 2018). July. 2018.



Parallel Execution and Balance
◼ Execution configuration of PBO

• If 𝐽 (the number of nodes for one trial) is smaller, 𝐼 (the number of parallel 
trials) can be larger to increase the throughput of trials.

• If 𝐼 is larger, non-promising inputs are being evaluated.

⇨ PBO becomes more explorative.

→ The balance between exploration and exploitation 
can be changed by adjusting 𝐼 and 𝐽 accordingly to 
optimization progress.
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(𝐼, 𝐽)=(4,2) (𝐼, 𝐽)=(2,4)

More explorative More exploitative



Autotuning of I and J
◼ Adapting to the optimization progress

• When 𝐼 parallel trials are done, 

• The best-ever solution is found?

• How much the GPR accuracy is improved?

◼ Check if the best-ever solution is found
• Not found

• The input space should be extensively searched ⇨ explorative

• Found

• The region near the solution should be searched ⇨ exploitative
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𝑦𝑚𝑎𝑥,𝑐 ≤ 𝑦𝑚𝑎𝑥,𝑐−1

𝑦𝑚𝑎𝑥,𝑐 > 𝑦𝑚𝑎𝑥,𝑐−1

𝑦𝑚𝑎𝑥,𝑐 : the best-ever solution at cycle c Increase I

Increase J



Autotuning of I and J (Cont’d)
◼ GPR accuracy: coefficient of determination

◼ Change in coefficient of determination
• Improvement is larger than that at the previous cycle. 

• More data will further improve the accuracy ⇨ explorative

• Improvement is smaller than that at the previous cycle.

• A sufficient amount of data have been obtained ⇨ exploitative
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𝑅𝑐
2 − 𝑅𝑐−1

2 > 𝑅𝑐−1
2 − 𝑅𝑐−2

2

𝑅𝑐
2 − 𝑅𝑐−1

2 ≤ 𝑅𝑐−1
2 − 𝑅𝑐−2

2

𝑦𝑜𝑏𝑠 : observed value

𝑦𝑝𝑟𝑒𝑑 : predicted value

𝑅2 = 1 −
σ𝑖=1
𝑁 (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2

σ𝑖=1
𝑁 (𝑦𝑜𝑏𝑠,𝑖 − ത𝑦𝑜𝑏𝑠)

2

Observed and predicted values are compared.

Higher is better. 𝑅2 = 1 if perfect.

The accuracy generally improves with the 

number of trials.

Increase I

Increase J



PBO with AT
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・Start with explorative search

・Conditions 1 and 2 are checked

・The best-ever solution found?

・The accuracy improved?

・If both are true, be more exploitative

・I /=2, J *= 2

・If both are false, be more explorative

・ I *=2, J /= 2

・Otherwise, I and J remain unchanged

I parallel trials

Cond 1

Cond 2

Cond 2

I /= 2, J *= 2 I *= 2, J /= 2

False

False

True

True

True

False

start 𝑦𝑚𝑎𝑥,𝑐 > 𝑦𝑚𝑎𝑥,𝑐−1

𝑅𝑐
2 − 𝑅𝑐−1

2 ≤ 𝑅𝑐−1
2 − 𝑅𝑐−2

2

Cond 1:

Cond 2:



Evaluation Setup
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Sphere function [3]

・Simple convex
Ackley function [3]

・many local minima
Michalewicz function [3]

・flat regions
・smaller input ranges 

◼ Optimization Problems
• 3 benchmark functions with different characteristics

• The dimensionality 𝑑 is 5 or 10

[3] Sonja Surjanovic and Derek Bingham. 2013. Virtual Library of Simulation Experiments : Test Functions and Datasets. 
Last accessed Jan. 26, 2023 https://www.sfu.ca/~ssurjano/index.html
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Evaluation Setup (Cont’d)

◼Execution time
• Each trial is expensive and parallelized with 𝐽 nodes

• Amdahl’s law

International Workshop on Automatic Performance Tuning (iWAPT)

𝑡𝐽 : parallel execution time

𝐽 : the number of nodes

𝛼 : parallelization ratio

𝑡𝐽 = 𝑡1 ∙ (1 − 𝛼 +
𝛼

𝐽
)

𝑡1 = 1000𝑠
𝛼 = 0.999

◼ Other conditions
• The total number of trials: 1024 (initial random search : 256 trials)

• System parallelism 𝐼 × 𝐽 = 256

• Initial condition: 𝐼, 𝐽 = (256,1)→ most explorative configuration

• 30 runs to calculate the average results



Best-Ever Solution Improvement
◼ Evaluation Results

• Horizontal Axis : Elapsed Time [s]

• Vertical Axis    : The output of the 
best solution found at the time.
(best-ever solution)

◼ Sphere Function
• The proposed method quickly 

improves the solution and finally 
finds a better solution.

⇨ AT can improve the efficiency
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𝑑 = 10, 𝛼 = 0.999

𝑑 = 5 𝛼 = 0.999



Best-Ever Solution Improvement
◼ Ackley (𝒅 = 𝟓)

• The proposed method can achieve 
a better final solution.

• The improvement is as fast as 
𝐼, 𝐽 = 16,16 , (64,4).

◼ Ackley (𝒅 =10)
• The best solution is found with 

𝐼, 𝐽 = 256,1 .

• The improvement is slow.

• The proposed method can achieve 
the second-best solution.
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𝑑 = 10, 𝛼 = 0.999

𝑑 = 5, 𝛼 = 0.999

⇨ The proposed can appropriately adjust the parameters and achieve 

comparable performance to the best parameter configuration.



Best-Ever Solution Improvement
◼ Michalewicz

• The proposed method shows slow 
improvement at first.

• The difference becomes smaller at 
the later stage of optimization.

The proposed method starts with the 
most explorative parameters (I,J)=(256,1), 
and becomes exploitative only 
gradually.
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𝑑 = 5, 𝛼 = 0.999

𝑑 = 10, 𝛼 = 0.999



Summary
◼ Purpose

• Efficient execution of black box optimization by PBO with making a 
good use of system parallelism under computing resource 
constraint.

◼ Approach = Auto-tuning
• System parallelism is used for whether executing more parallel 

trials or using more computing nodes for each trial.
• Balancing exploration and exploitation accordingly to the optimization 

progress.

◼ Evaluation 
• The proposed method can stably achieve a fast improvement and a 

good final result.
• Many parallel trials are executed in parallel at the early stage to reduce 

the total execution time.
• Each trial is accelerated by using many nodes at the later stage of the 

optimization to find a better solution.
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