
Optimizing Sparse Linear Algebra Through 
Automatic Format Selection and Machine Learning

Christodoulos Stylianou, Michèle Weiland
EPCC, The University of Edinburgh
c.stylianou@ed.ac.uk

19 May 2023 1iWAPT2023



Introduction

• Sparse matrices essential concept in computational science and engineering

• Sparse matrix storage formats are different in-memory representations of sparse matrices
• Each designed to exploit strengths of the different hardware architectures or sparsity pattern of the matrix

• More than 70 formats have been developed over the years - still no single one performs best across:
• Different sparsity patterns
• Different target architectures
• Different operations

• Most code-bases today still use a single format (CSR)
ØAdapting the data structure at run-time offers new optimization opportunities
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Sparse Matrix Storage Formats
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Morpheus: A Library for Dynamic Sparse Matrices
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• Templated C++ library

• Functional Design
• Containers & Algorithms

• Data Management

• Support for Heterogeneous Platforms
• Host-Device Model
• Mirroring

• Efficient dynamic switching

• Continuous addition of new formats and 
backends under the same interface.
• Increased life-time of software
• Current developments support 6 formats:

• COO, CSR, DIA, ELL, HYB, HDC
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Link to Morpheus: https://github.com/morpheus-org/morpheus

Figure 1: High-level overview of Morpheus v1.0.0.

https://github.com/morpheus-org/morpheus


Motivation

• New formats are proposed every time a new architecture emerges
• Aim to exploit the new characteristics and features of the new hardware.

• In the era of heterogeneous computing, hardware has become more diverse
• Applications often require the use of multiple formats across the different types of hardware to remain optimal.

• Still, no single format would perform optimally across sparsity patterns, operations and hardware 
architectures.
Ø Select the optimal format from a pool of candidate formats at runtime.

• Experience users may have a feeling about the choice of the optimal format for a category/type of 
matrices they frequently use.
• However, a decision as such is not always trivial.

• Choosing the optimal format by running the available options first can result in prohibitive overheads.

• Adopting a Machine Learning (ML) model has the potential to offer an accurate and low-overhead 
solution to the problem of automatic format selection.
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Auto-tuning Pipeline: High-Level Overview

• The focus of this work is to develop an auto-tuner 
for selecting the optimal format to switch to, 
given a matrix, an operation and target hardware.

• Most accurate prediction can be optained by utilizing 
a run-first approach.
• Requires multiple expensive conversions.

• A better approach that reduces the prediction cost is 
to use ML models, by relaxing the accuracy 
requirements.

• The pipeline is divided in the offline (red) and 
online (green) stages.
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Figure 2: High-level overview of the auto-tuning pipeline. Red and 
green boxes represent offline and online operations respectively.



Auto-tuning Pipeline: Offline Stage

• Database of 2200 real-valued and square 
matrices from SuiteSparse Collection
• varying sizes, sparsity patterns and application 

domains

• For every matrix, we obtain the optimal format 
(input targets) through profiling runs.

• The input data for training are generated by 
performing feature extraction.

• Offline stage responsible for train, tune and 
extract the ML model in a file.

• For each architecture and operation of interest 
a different ML model is generated.

• Process is streamlined by wrapping the offline 
pipeline in a Python framework (Sparse.Tree).
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Figure 2a: Offline stage of the auto-tuning pipeline

Link to Sparse.Tree: https://github.com/morpheus-org/sparse.tree

https://github.com/morpheus-org/sparse.tree


Auto-tuning Pipeline: Online Stage

• To be able to select the optimal format in 
Morpheus, we need to be able to make the 
decision efficiently and online.

• The online stage employes Morpheus-Oracle
•  C++ architecture-independent auto-tuner.

• Oracle is responsible for predicting the optimal 
format by:
• loading the ML model from file
• performing feature extraction, in the same 

way as during the offline stage.

• The optimal format ID is then passed to 
Morpheus to perform the runtime switching.
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Figure 2b: Online stage of the auto-tuning pipeline

Link to Morpheus-Oracle: https://github.com/morpheus-org/morpheus-oracle

https://github.com/morpheus-org/morpheus-oracle


Feature Extraction

• The process of transforming the original sparse 
matrix into a set of numerical “features”.

• Features can be processed by the model while 
preserving the information about the sparsity 
pattern of the original matrix. 

• Trade-off between the overheads required for 
computing these features and the accuracy of 
the decision that is made based them.

• For this work, a set of 10 features was selected 
that captures information about the:
• Basic structure of the sparse matrix
• Distribution of non-zeros across the rows
• Distribution of non-zeros across the diagonals.

Parameter Description Formula

M # of rows -
N # of columns -

NNZ # of non-zeros -

NNZ
avg. NNZ

NNZ = NNZ
Mper row

⇢ density ⇢ = NNZ
M⇤N

max(NNZ)
max NNZ

max(NNZ) = maxM
i=1NNZiper row

min(NNZ)
min NNZ

min(NNZ) = minM
i=1NNZiper row

�NNZ
std of NNZ

�NNZ =
PM

i=1 |NNZi�NNZ|2
Mper row

ND # of diagonals -

NTD
# of -true diagonals

TABLE I: Feature parameters used for training the model and,
where relevant, the corresponding formula used for computing
each one.

the problem will facilitate better learning, but at the cost of
having to compute that information. For the purposes of this
work, a set of 10 features has been selected (see Section IV-A)
as shown in Table I, capturing information about the basic
structure of the sparse matrix but also about the distribution
of non-zeros across the rows and diagonals of the matrix.

A. Feature selection

The first three features – number of rows (M), number
of columns (N ) and number of non-zeros (NNZ) – aim to
provide a general idea of the size of the matrix, and they are
easy to capture as they are provided by the DynamicMatrix.
According to Monakov et al. [8], COO is well suited for very
sparse matrices with many empty rows and we therefore also
add the average number of non-zerors per row (NNZ) and
the density (⇢) of the matrix to the set of features.

On the other hand, the performance of specific purpose
formats, such as DIA and ELL, is heavily affected by the
distribution of non-zeros as distributions that are not a good
fit for each format will result in excessive padding of zero
elements in the matrix hindering the overall performance. ELL
allocates memory based on the maximum number of non-
zero elements in a row, therefore matrices with extremely
uneven distribution of non-zeros per row are not a good fit
for such a format. This information is captured by measur-
ing the maximum and minimum number of non-zeros per
row (max(NNZ), min(NNZ)) and the standard deviation
of the non-zeros per row (�NNZ). In a similar manner,
the DIA format allocates memory based on the number of
diagonals, therefore for matrices that have a large number
of diagonals that each only have a few elements will again
result in excessive padding. This time therefore the diagonals
of the matrix are traversed, keeping count of the number of
diagonals (ND) with at least 1 non-zero and the number of
true-diagonals (NTD) that have number of non-zeros above
a threshold. Since HYB and HDC are hybrid formats, the
existing features remain representative. More details on how

the features are actually extracted for the different formats are
given in Section VI-C.

V. MACHINE LEARNING MODEL

Our aim is to train a model that can predict the optimal
storage format of a given sparse input matrix. This type of
problem falls into the category of multi-class classification
problems. During training, for each input matrix in the set,
we extract a collection of 10 features and the target attribute
that corresponds to the index of the optimal format, obtained
from the profiling runs. The objective of the model is to try
and determine a mapping between the input features and the
optimal format ID, which can be described by Equation 1:

f( ~x1, ~x2, ..., ~xn) ! yn(COO,CSR, ...,HDC) (1)

where ~xi represents the feature vector of the ith sparse matrix
in the training set and yn represents the target vector with
each entry containing the index of one format from the six
available.

To train a model to predict the value of the target of
interest, we are using a decision tree ML algorithm that
effectively learns simple decision rules inferred from the data
features. The reasons for this choice are two-fold: firstly, it is
simple to understand and interpret this method; and secondly,
it requires little to no data preparation before training the
model or using it for prediction. However, decision trees can
overfit by creating over-complex trees that do not generalize
the data well or become unstable in small variations in the
data. To circumvent these issues and generate the optimal
model architecture, an exhaustive Grid search is performed
to search from the optimal hyperparameter values in a defined
hyperparameter space. In addition, to improve the robustness
of the model, an ensemble of decision trees is built, called a
“random forest”, that effectively fits a number of decision tree
classifiers onto different sub-samples of the dataset. Whilst
random forest classifiers can improve the predictive accuracy
of the model and control overfitting, this comes at the expense
of higher prediction times since multiple trees need to be
traversed and the decision from each tree has to be combined
into a single final result.

For this work we are specifically interested in training a
model to predict the optimal format to be used during the
SpMV operation for every backend supported in Morpheus,
however the techniques and algorithms used here are transfer-
able to other sparse operations. Models using both decision
tree and random forest methods are trained and tuned in
Python, for a number of x86 and ARM CPUs as well as
NVIDIA and AMD GPUs, and extracted to a file to be used
during the auto-tuning phase.

VI. MORPHEUS ORACLE - AN AUTO-TUNER FOR
AUTOMATIC FORMAT SELECTION

To facilitate a systematic way of performing format se-
lection we developed Oracle, a header-only C++ library for
automatic format selection. It has been developed to comple-
ment the dynamic switching capabilities in Morpheus and tune
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Table 1: Feature parameters used for training the model and, 
where relevant, the corresponding formula used for computing 
each one. 



Machine Learning Model (i)

• Our aim is to train a model that can predict the optimal storage format of a given sparse input matrix. 

• This type of problem falls into the category of multi-class classification problems.

• The objective of the model is to try and determine a mapping between the input features and the 
optimal format ID:

𝑓 𝑥! , 𝑥", … , 𝑥# → 𝑦#(𝐶𝑂𝑂, 𝐶𝑆𝑅,… ,𝐻𝐷𝐶)

where �⃗�! represents the feature vector of the ith sparse matrix in the training set and 𝑦" represents the 
target vector with each entry containing the index of one format from the six available. 

• Training is done using a decision tree ML algorithm that effectively learns simple decision rules inferred 
from the data features. 
• Simple to understand and interpret this method.
• Requires little to no data preparation before training the model or using it for prediction. 

• To improve the robustness of the model, an ensemble of decision trees is built (Random Forest).
• Effectively fits a number of decision tree classifiers onto different sub-samples of the dataset. 
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Morpheus-Oracle (i)

• Oracle is a C++ ibrary that offers a systematic way of performing automatic format selection.

• Developed to complement the dynamic switching capabilities in Morpheus

• Follows similar functional design philosophy as Morpheus:
• Containers (Tuners) & Algorithms (Tuning Operations)

• Tuners are responsible for:
1. Encapsulating the specifics of each tuner’s implementation 
2. Exposing the user only to an interface that configures and runs the tuner. 

• Tuning operations are responsible for: 
1. performing the actual tuning process and figuring out the optimal format.

• Currently three tuners are supported:
• RunFirstTuner, DecisionTreeTuner and RandomForestTuner: 

• The performance of each of the three tuners is a direct trade-off between runtime overhead and 
prediction accuracy. 
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Experimental Setup

• All experiments were carried out on three 
supercomputers:
• Archer2, Isambard and Cirrus.

• Experiments run on a representative set of all 
major hardware architectures: 
• x86 (Intel and AMD) and ARM CPUs 
• NVIDIA and AMD GPUs. 

• Dataset uses 2200 real-valued and square 
matrices 
• Available from the SuiteSparse library
• Train-Test Split: 80%-20%.

SYSTEM SUBSYSTEM QUEUE CPU GPU

ISAMBARD

A64FX A64FX 1X FUJITSU A64FX 
(48 Cores) -

P3

INSTINCT
1x AMD EPYC 7543P 

(32 Cores)

4x AMD Instinct 
MI100

AMPERE
4x NVIDIA 

Ampere A100 
40GB

XCI ARM
1X MARVELL 

THUNDERX2 ARM 
(32 CORES)

-

CIRRUS

STANDARD 2X INTEL XEON 
E5-2695 (18 CORES) -

GPU 2X INTEL XEON 
GOLD 6248 (18 CORES) 

4X NVIDIA 
VOLTA V100 

16GB 

ARCHER2 STANDARD 2X AMD EPYC 7742 
(64 CORES) -
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Table 2: Node configurations for the systems used in the 
experiments. 



Format Distribution

• Overall optimal format is CSR. 

• Even on the same hardware distribution can change 
drastically between backends:
• A64FX/Serial : ~50% HDC, DIA and COO
• A64FX/OpenMP: ~75% CSR. 

• Can also stay the same (Archer2 and Cirrus).

• Optimal format very different between MI100 and A100.

• The format distribution for every target is unbalanced. 
• Imbalanced classification problem or rare event 

prediction. 
Ø An auto-tuner that can predict rare events is useful if in 

the case where selecting a different format benefits 
performance noticeably.
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Figure 3: Optimal Format distribution for 1000 repetitions of SpMV
using the SuiteSparse dataset. The optimal format for each matrix 
is selected to be the one with the smallest runtime. 



Optimal Format Performance
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(a) OpenMP backend

Figure 4: Runtime speedup of SpMV using the optimal format against 
CSR for the SuiteSparse dataset. Matrices with optimal format set to 
CSR are omitted for clarity. 

(b) CUDA and HIP backends

• Experiment quantifies the real benefit (speedup) for the 
SpMV operation when the optimal format is not CSR.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇!"#

𝑇$%&'()*

• For OpenMP backend, noticeable number of matrices exhibits 
speedups 1.5×-10.5×
• Average speedup of approximately 1.8× for Cirrus, XCI and A64FX
• Average speedup of 1.3× on Archer2

• For the CUDA and HIP backends, runtime speedups are more 
noticeable compared to the CPU backends 
• The average speedup is 8× and 10× – max up to 1000×.

ØResults justify the development and use of an auto-tuner
Ø must be lightweight to avoid performance degradation



Hyperparameter Tuning

• To account for overfitting we perform a 5-fold Cross Validation (CV) on the training set.

• A grid search is performed to search for the optimal hyperparameter values.
• e.g. max depth of tree, max number of features, number of estimators etc.

• Metrics of interest: 1) Accuracy and 2) Balanced accuracy (since dataset is unbalanced).

• Average accuracy and Balanced accuracy scores of the models on the Test set:
• DecisionTree (Tuned): 90.85% ± 7.87% and 78.12% ± 4.91%.
• RandomForest (Baseline): 92.36% ± 2.93% and 80.22% ± 11.04%
• RandomForest (Tuned): 92.63% ± 3.02% and 84.42% ± 6.64%

• The tuned models are using significantly fewer and shallower trees → Faster prediction times. 

• For some system and backend pairs, change in balanced accuracy quite drastic 
e.g. +10% on Cirrus/OpenMP pair.

• The development of both DecisionTreeTuner and RandomForestTuner is justified.

19 May 2023 iWAPT2023 17



Auto-tuner Performance

• The tuned classifier is deployed in C++ as a tuner
• e.g. the RandomForestTuner in Oracle.

• The benchmark performs 1000 SpMV operations:
• Optimum format selected by the tuner at runtime. 

• Benchmark uses the matrices in the test set. 

• Runtime cost of tuning is measured in terms of 
SpMV operations in CSR format:

𝐶!"#$#% =
𝑇&'(

𝑇)* + 𝑇+(*,

• ≥75% of the matrices in the test set require fewer 
than 100 repetitions for the tuning process.

System Backend Mean Std Min Max

Archer2
Serial 10 19 2 303

OpenMP 25 20 2 179

Cirrus

Serial 10 30 2 359

OpenMP 64 72 2 643

CUDA 7 3 1 29

A64FX
Serial 6 9 1 120

OpenMP 45 40 1 246

P3
CUDA 2 3 1 42

HIP 15 9 1 30

XCI
Serial 12 28 2 335

OpenMP 17 29 2 203
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Table 3: The runtime cost, expressed as number of 
SpMV operations using CSR, of using the auto-tuner. 

Ctuning: the runtime cost of tuning.
TCSR: the runtime of a single CSR SpMV.
TFE: the runtime of feature extraction.
TPRED: the runtime for prediction. 



Tuned SpMV Performance (i)
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Figure 5: Obtained runtime speedup from using the auto-tuner and 
predicted format against using CSR in performing 1000 SpMV
operations on the available systems (OpenMP backend) for every 
matrix in the test set. 

• The runtime speedups in SpMV obtained by adopting the 
auto-tuner compared to SpMV using CSR is given by:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇&'(

𝑇-./* + 𝑇0+-
=

𝑇&'(
𝑇)* + 𝑇+(*, + 𝑇0+-

• On CPUs, the runtime from using the auto-tuner on average
is similar to as if we were to use the CSR format. 
• Consistent ~1.1× average speedup across all systems.
• In many cases the auto-tuning process results in noticeable 

speedups, with maximum achieved speedup of 7×.

• For the majority of matrices the overheads from the auto-
tuner do not reduce overall performance.

• The few for which performance falls significantly below 1, we do 
observe the impact from wrongly classifying the optimal format. 

TCSR: the runtime of 1000 CSR SpMV.
TOPT: the runtime of 1000 Optimal SpMV.
TFE: the runtime of feature extraction.
TPRED: the runtime for prediction. 



Tuned SpMV Performance (ii)
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Figure 6: Obtained runtime speedup from using the auto-tuner and 
predicted format against using CSR in performing 1000 SpMV
operations on the available GPU systems (CUDA and HIP backends) 
for every matrix in the test set. 

• On the GPU backends auto-tuning is much more 
beneficial with the following average speedups:
• 1.5× for the NVIDIA A100 and 3× for V100 GPUs
• 8x for AMD MI100.

• For a number of matrices the achieved speedup improves 
performance by orders of magnitude.

• For the majority of matrices the overheads from the auto-
tuner do not reduce overall performance.

• On GPUs a mis-classification is less severe. 

Ø𝜇#$"%& ≅ 𝜇'(#!)*+
Ø The overheads introduced by the auto-tuner become negligible 

as the number of SpMV repetitions increases. 
μtuned: average speedup with tuning.
μoptimal: average speedup of optimal format 
without tuning.



Conclusions

• Selecting the optimal sparse matrix storage format is important for allowing applications to remain 
optimal across the available hardware architectures
• However, the selection process is not a trivial task. 

• ML offers a systematic solution to this problem by approaching it as a classification task. 

• By training, tuning and deploying an ensemble of decision trees, we are able to accurately predict the 
optimum format to be used for the SpMV operation across the main HPC architectures. 

• Most of the time the best option is to use CSR
• In some cases, the runtime is improved by orders of magnitude from switching to the optimal format.

• Our proposed light-weight auto-tuning approach introduces overheads in the overall runtime of SpMV
• Overheads are amortised quickly within a few SpMV operations on average (more noticeable benefit to GPUs).

• Further work can explore ways of further improving the accuracy of our models either through balancing 
the dataset or other ML methods.

• Furthermore, eliminating the manual feature extraction remains an avenue for further research. 
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