Optimizing Sparse Linear Algebra Through
Automatic Format Selection and Machine Learning

Christodoulos Stylianou, Michele Weiland
EPCC, The University of Edinburgh
c.stylianou@ed.ac.uk

Introduction

Sparse matrices essential concept in computational science and engineering

Sparse matrix storage formats are different in-memory representations of sparse matrices
Each designed to exploit strengths of the different hardware architectures or sparsity pattern of the matrix

More than 70 formats have been developed over the years - still no single one performs best across:
Different sparsity patterns
Different target architectures
Different operations

Most code-bases today still use a single format (CSR)
Adapting the data structure at run-time offers new optimization opportunities

epcc

Sparse Matrix Storage Formats oo A4 0 1 3

AV 12 1

Al 0|00 |1 |1|2|2|2|3|4]4 0 3 4 0
7 *
AJ 0|13 [1|/2|1]|2|3|3|3]4 > i
o 8 0 *
1| » AV 1 2 11 3 4 5 6 7 8 9 10 9 10 * *
S (b) COO Representation (d) DIA Representation
5 6 7
8 AJ o 1 3 AV 1 2 1
9 10 IRP 0 3 5 8 9 11 1 2 3 4 =
(a) Dense Matrix T2 3 5 6 7
AJ 0|13 [1|2|1]2|3|3|3]4
3 * * 8 * *
AV 1 2 11 3 4 5 6 7 8 9 10 3 4 = 9 10 *
(c) CSR Representation (e) ELL Representation

epcc

Morpheus: A Library for Dynamic Sparse Matrices

Templated C++ library

/~ Containers /" Algorithms

Functional Design
Containers & Algorithms

Algebra Data 10
Management

ata Management i ¥ -

{ } { write_matrix }
copy

Sparse Dynamic

_market

Support for Heterogeneous Platforms

Host-Device Model
Mirroring

Efficient dynamic switching

Continuous addition of new formats and
backends under the same interface.

Increased life-time of software

Current developments support 6 formats:
COO, CSR, DIA, ELL, HYB, HDC

Link to Morpheus: https://github.com/morpheus-org/morpheus

O
»
3
=
()
=
x
o
@
H
7]
o

IIIIIEHHIIHEIIIII
Utils

[waxpby] [update_diagonal} [get_diagonal} [set_values }

, '
B]
- '
»]
B]
B |
!)
l’ 5 I‘
y ‘\\ y
- - L
Execution
Space

\

1

]

]

https://github.com/morpheus-org/morpheus

Motivation

New formats are proposed every time a new architecture emerges
Aim to exploit the new characteristics and features of the new hardware.

In the era of heterogeneous computing, hardware has become more diverse
Applications often require the use of multiple formats across the different types of hardware to remain optimal.

Still, no single format would perform optimally across sparsity patterns, operations and hardware
architectures.
Select the optimal format from a pool of candidate formats at runtime.

Experience users may have a feeling about the choice of the optimal format for a category/type of
matrices they frequently use.

However, a decision as such is not always trivial.

Choosing the optimal format by running the available options first can result in prohibitive overheads.

Adopting a Machine Learning (ML) model has the potential to offer an accurate and low-overhead
solution to the problem of automatic format selection.
epcc

Auto-tuning Pipeline: High-Level Overview

The focus of this work is to develop an auto-tuner
for selecting the optimal format to switch to,

given a matrix, an operation and target hardware.

Sparse.Tree

Most accurate prediction can be optained by utilizing | [Profiing | input :
. ! Runs Targets N :
a run-flrSt apprOaCh SuiteSparse ~l—|:: J :Training —— > Tuning - d; 'i/’l((t)r:eﬁt ; > Model
Database 1 Feature Input asoe |:e u: ee , Extracted | patapase
Requires multiple expensive conversions. | [Extraction | Data Hode Hode Model
A better approach that reduces the prediction cost is 1 ----- orehom v T v
to use ML models, by relaxing the accuracy Mar-ul ! ; o
. X ode Model ' 1 :
requirements. e S| . pe— Py
Matrix ! | Feature Input , Format | !
. 1 |Extraction ata I :
The pipeline is divided in the offline (red) and = e Bl I __________ :
online (green) stages.

Figure 2: High-level overview of the auto-tuning pipeline. Red and
green boxes represent offline and online operations respectively.

epcc

Auto-tuning Pipeline: Offline Stage

Database of 2200 real-valued and square
matrices from SuiteSparse Collection

varying sizes, sparsity patterns and application
domains

For every matrix, we obtain the optimal format
(input targets) through profiling runs. .

Sparse.Tree :

The input data for training are generated by ! P Runs. || Torgets '
1 H i I > rainin > Tunin »| Extract —-—)I
performing feature extraction. SufeSparse ‘[et | [e Baseine| "% ["Tunea”| Model | m——c
Extraction Data 1 ode
Offline stage responsible for train, tune and
extract the ML model in a file. Figure 2a: Offline stage of the auto-tuning pipeline

For each architecture and operation of interest
a different ML model is generated.

Process is streamlined by wrapping the offline
pipeline in a Python framework (Sparse. Tree).

Link to Sparse. Tree: https://github.com/morpheus-org/sparse.tree

epcc

https://github.com/morpheus-org/sparse.tree

Auto-tuning Pipeline: Online Stage

To be able to select the optimal format in
Morpheus, we need to be able to make the
decision efficiently and online.

The online stage employes Morpheus-Oracle
C++ architecture-independent auto-tuner. i . oo ,

Oracle is responsible for predicting the optimal Load

1 1 .
o :
Model — Model] Model : : !
format by: Database / 1 Prediot — > Convert —> SpMV | '
. . : ' Feat Inout , Format ! 1
loading the ML model from file Ma e e e ™ Dot D !
1 1
1 ! 1

performing feature extraction, inthe same = |"----------mmmiiooieee ieo oo '
way as during the offline stage.

Figure 2b: Online stage of the auto-tuning pipeline
The optimal format ID is then passed to

Morpheus to perform the runtime switching.

Link to Morpheus-Oracle: https://github.com/morpheus-org/morpheus-oracle

epcc

https://github.com/morpheus-org/morpheus-oracle

Feature Extraction

The process of transforming the original sparse
matrix into a set of numerical “features”.

Features can be processed by the model while
preserving the information about the sparsity
pattern of the original matrix.

Trade-off between the overheads required for
computing these features and the accuracy of
the decision that is made based them.

For this work, a set of 10 features was selected
that captures information about the:

Basic structure of the sparse matrix
Distribution of non-zeros across the rows
Distribution of non-zeros across the diagonals.

Parameter Description Formula
M # of rows -
N # of columns -
NNZ # of non-zeros -
per row
- _ NNz
p density P= Ffan
maxr(NNZ) max NNZ mar(NNZ) = maz? NNZ;
per row =
min(NNZ) min NNZ min(NNZ) = minM NN Z,
per row =
std of NNZ M NNZ; _NNZI|?
oNNZ per row onng = Zi=t] M |
Np # of diagonals -
of
Nrp -

true diagonals

Table 1: Feature parameters used for training the model and,
where relevant, the corresponding formula used for computing

each one.

epcc

Machine Learning Model (i)

Our aim is to train a model that can predict the optimal storage format of a given sparse input matrix.
This type of problem falls into the category of multi-class classification problems.

The objective of the model is to try and determine a mapping between the input features and the
optimal format ID:

f(x1, %2, -, Xn) = yn(COO,CSR, ..., HDC)

where x; represents the feature vector of the iy, sparse matrix in the training set and y,, represents the
target vector with each entry containing the index of one format from the six available.

Training is done using a decision tree ML algorithm that effectively learns simple decision rules inferred
from the data features.

Simple to understand and interpret this method.
Requires little to no data preparation before training the model or using it for prediction.

To improve the robustness of the model, an ensemble of decision trees is built (Random Forest).
Effectively fits a number of decision tree classifiers onto different sub-samples of the dataset.

epcc

Morpheus-Oracle (i)

Oracle is a C++ ibrary that offers a systematic way of performing automatic format selection.

Developed to complement the dynamic switching capabilities in Morpheus

Follows similar functional design philosophy as Morpheus:
Containers (Tuners) & Algorithms (Tuning Operations)

Tuners are responsible for:
Encapsulating the specifics of each tuner’s implementation
Exposing the user only to an interface that configures and runs the tuner.

Tuning operations are responsible for:
performing the actual tuning process and figuring out the optimal format.

Currently three tuners are supported:
RunFirstTuner, DecisionTreeTuner and RandomForestTuner:

The performance of each of the three tuners is a direct trade-off between runtime overhead and
prediction accuracy.

epcc

Experimental Setup

All experiments were carried out on three

supercomputers: ABAEX ABAEX 1X FUJITSU AG4FX
. 48 C
Archer2, Isambard and Cirrus. (48 Gores)
Experiments run on a representative set of all INSTINCT MY
major hardware architectures: SAMBARD P3 R e
4x NVIDIA
x86 (Intel and AMD) and ARM CPUs AMPERE AmXpere A100
40GB
NVIDIA and AMD GPUs.
1X MARVELL
XClI ARM THUNDERX2 ARM
Dataset uses 2200 real-valued and square (32 CORES)
matrices STANDARD 2X INTEL XEON

. . . E5-2695 (18 CORES)
Available from the SuiteSparse library oRRUS

4X NVIDIA
Train-Test Split: 80%-20%. GPU 2X INTEL XEON

GOLD 6248 (18 CORES) V0|-1T6/g \é1oo

2X AMD EPYC 7742

ARCHER2 STANDARD (64 CORES)

Table 2: Node configurations for the systems used in the

experiments.
p epcc

Format Distribution

Overall optimal format is CSR. 100 Format:
B COO
Even on the same hardware distribution can change l CSR
. s DIA
drastically between backends: 60 | . m—ELL
AB4FX/Serial : ~50% HDC, DIA and COO 2 E. i
AB4FX/OpenMP: ~75% CSR. § ol N\
= \ ackend:
Can also stay the same (Archer2 and Cirrus). 7 S-;-; o P
= | : [TT1 SERIAL
Optimal format very different between MI100 and A100. £ ® N D SUDA
N
- %:::
The format distribution for every target is unbalanced. N
Imbalanced classification problem or rare event

prediction. AG4FX ARCHER2 CIRRUS P3 XCl

System
An auto-tuner that can predict rare events is useful if in
the case where selecting a different format benefits Figure 3: Optimal Format distribution for 1000 repetitions of SpMV

performance notlceably. is selected to be the one with the smallest runtime.

epcc

using the SuiteSparse dataset. The optimal format for each matrix

Optimal Format Performance

Experiment quantifies the real benefit (speedup) for the
SpMV operation when the optimal format is not CSR.

Tcsr
Speedup = TopTiMAL

For OpenMP backend, noticeable number of matrices exhibits
speedups 71.5%-10.5x%
Average speedup of approximately 7.8x for Cirrus, XCl and A64FX

Average speedup of 1.3x on Archer2

For the CUDA and HIP backends, runtime speedups are more
noticeable compared to the CPU backends

The average speedup is 8x and 70x — max up to 7000x.

Results justify the development and use of an auto-tuner
must be lightweight to avoid performance degradation

— HcirrUS
°** MARCHER2
. Hxci
10* 1 == Haearx
t CIRRUS
1 ARCHER2
& XCl
1 AG4FX

)

Tes
TorTimaL

Speedup (

100 4

(a) OpenMP backend

. s = HMcirrus
103 4=
= = HAMPERE
.

t CIRRUS
t AMPERE
] INSTINCT

—~ 102 4 H

Tesr
TopTimaL

Speedup (
)

s

3
004 B

J

100 4

0 200 400 600 800 1000 1200 1400 1600
Matrix ID

(b) CUDA and HIP backends

Figure 4: Runtime speedup of SpMV using the optimal format against
CSR for the SuiteSparse dataset. Matrices with optimal format set to

CSR are omitted for clarity.
epcc

Hyperparameter Tuning

To account for overfitting we perform a 5-fold Cross Validation (CV) on the training set.

A grid search is performed to search for the optimal hyperparameter values.

e.g. max depth of tree, max number of features, number of estimators etc.
Metrics of interest: 1) Accuracy and 2) Balanced accuracy (since dataset is unbalanced).

Average accuracy and Balanced accuracy scores of the models on the Test set:
DecisionTree (Tuned): 90.85% + 7.87% and 78.12% + 4.91%.
RandomForest (Baseline): 92.36% £ 2.93% and 80.22% * 11.04%
RandomForest (Tuned): 92.63% * 3.02% and 84.42% * 6.64%

The tuned models are using significantly fewer and shallower trees — Faster prediction times.

For some system and backend pairs, change in balanced accuracy quite drastic
e.g. +10% on Cirrus/OpenMP pair.

The development of both DecisionTree Tuner and RandomfForestTuner is justified.

epcc

Auto-tuner Performance

The tuned classifier is deployed in C++ as a tuner
e.g. the RandomForestTuner in Oracle.

The benchmark performs 1000 SpMV operations:
Optimum format selected by the tuner at runtime.

Benchmark uses the matrices in the test set.

Runtime cost of tuning is measured in terms of
SpMV operations in CSR format:

TCSR
TFE + TPRED

Ctunin g =

=275% of the matrices in the test set require fewer
than 100 repetitions for the tuning process.

Serial 10 19 2 303
Archer2
OpenMP 25 20 2 179
Serial 10 30 2 359
Cirrus OpenMP 64 72 2 643
CUDA 7 3 1 29
Serial 6 9 1 120
AB4FX
OpenMP 45 40 1 246
CUDA 2 3 1 42
P3
HIP 15 9 1 30
Serial 12 28 2 335
XClI
OpenMP 17 29 2 203

Table 3: The runtime cost, expressed as number of
SpMV operations using CSR, of using the auto-tuner.

Ciuning: the runtime cost of tuning.

Tcsr: the runtime of a single CSR SpMV.

Tre: the runtime of feature extraction.

Tprep: the runtime for prediction. e p C C

Tuned SpMV Performance (i)

The runtime speedups in SpMV obtained by adopting the
auto-tuner compared to SpMV using CSR is given by:

TCSR TCSR

Speedup = =
TTUNE + TOPT TFE + TPRED + TOPT

On CPUs, the runtime from using the auto-tuner on average
is similar to as if we were to use the CSR format.

Consistent ~1.1x average speedup across all systems.

In many cases the auto-tuning process results in noticeable
speedups, with maximum achieved speedup of 7x.

For the majority of matrices the overheads from the auto-
tuner do not reduce overall performance.

The few for which performance falls significantly below 1, we do
observe the impact from wrongly classifying the optimal format.

Haesarx (tuned)

=== HMaearx (Optimal)

6 Hxcr (tuned)

Hxci (optimal)

5 —— HMcirrus (tuned)

=== Mcirrus (optimal)

. —— MarcHer2 (tuned)

4 Bl === HMarcHer2 (optimal)
- T AB64FX

- XCl

. t CIRRUS
**a t ARCHER2

Tes
Speed up (TTUNE + Trren)
W

. .

10t 102 103
Matrix ID

Figure 5: Obtained runtime speedup from using the auto-tuner and
predicted format against using CSR in performing 1000 SpMV
operations on the available systems (OpenMP backend) for every
matrix in the test set.

Tesr: the runtime of 1000 CSR SpMV.
Topt: the runtime of 1000 Optimal SpMV.
Tre: the runtime of feature extraction.

Tprep: the runtime for prediction.
epcc

Tuned SpMV Performance (ii)

On the GPU backends auto-tuning is much more
beneficial with the following average speedups:

1.5x% for the NVIDIA A100 and 3% for V100 GPUs
8x for AMD MI100.

For a number of matrices the achieved speedup improves
performance by orders of magnitude.

For the majority of matrices the overheads from the auto-
tuner do not reduce overall performance.

On GPUs a mis-classification is less severe.

Htuned = Hoptimal
The overheads introduced by the auto-tuner become negligible
as the number of SpMV repetitions increases.

Speed up (TTUNZ':’S';PRED)

103

102 E

10° 3

—— MinsTinet (tuned)
=== MnsTiver (Optimal)
Hampere (tuned)
=== Mampere (Optimal)
Mcirrus (tuned)
=== HMcirrus (optimal)

] INSTINCT

] AMPERE

] CIRRUS

10°

10*

Matrix ID

102

103

Figure 6: Obtained runtime speedup from using the auto-tuner and
predicted format against using CSR in performing 1000 SpMV
operations on the available GPU systems (CUDA and HIP backends)

for every matrix in the test set.

Mwneq: @verage speedup with tuning.
Moptimal: @verage speedup of optimal format

without tuning.

epcc

Conclusions

Selecting the optimal sparse matrix storage format is important for allowing applications to remain
optimal across the available hardware architectures

However, the selection process is not a trivial task.
ML offers a systematic solution to this problem by approaching it as a classification task.

By training, tuning and deploying an ensemble of decision trees, we are able to accurately predict the
optimum format to be used for the SpMV operation across the main HPC architectures.

Most of the time the best option is to use CSR

In some cases, the runtime is improved by orders of magnitude from switching to the optimal format.

Our proposed light-weight auto-tuning approach introduces overheads in the overall runtime of SpMV
Overheads are amortised quickly within a few SpMV operations on average (more noticeable benefit to GPUs).

Further work can explore ways of further improving the accuracy of our models either through balancing
the dataset or other ML methods.

Furthermore, eliminating the manual feature extraction remains an avenue for further research.

epcc

